Monday, 18 June 2007

The Elegant Universe III

BRIAN GREENE

The Elegant Universe

Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory





String Theory as the Unified Theory of Everything

In Einstein's day, the strong and the weak forces had not yet been discovered, but he found the existence of even two distinct forces — gravity and electromagnetism — deeply troubling. Einstein did not accept that nature is founded on such an extravagant design. This launched his thirty-year voyage in search of the so-called unified field theory that he hoped would show that these two forces are really manifestations of one grand underlying principle. This quixotic quest isolated Einstein from the mainstream of physics, which, understandably, was far more excited about delving into the newly emerging framework of quantum mechanics. He wrote to a friend in the early 1940s, "I have become a lonely old chap who is mainly known because he doesn't wear socks and who is exhibited as a curiosity on special occasions."3


Einstein was simply ahead of his time. More than half a century later, his dream of a unified theory has become the Holy Grail of modern physics. And a sizeable part of the physics and mathematics community is becoming increasingly convinced that string theory may provide the answer. From one principle — that everything at its most microscopic level consists of combinations of vibrating strands — string theory provides a single explanatory framework capable of encompassing all forces and all matter.


String theory proclaims, for instance, that the observed particle properties, the data summarized in Tables 1.1 and 1.2, are a reflection of the various ways in which a string can vibrate. Just as the strings on a violin or on a piano have resonant frequencies at which they prefer to vibrate — patterns that our ears sense as various musical notes and their higher harmonics — the same holds true for the loops of string theory. But we will see that, rather than producing musical notes, each of the preferred patterns of vibration of a string in string theory appears as a particle whose mass and force charges are determined by the string's oscillatory pattern. The electron is a string vibrating one way, the up-quark is a string vibrating another way, and so on. Far from being a collection of chaotic experimental facts, particle properties in string theory are the manifestation of one and the same physical feature: the resonant patterns of vibration — the music, so to speak — of fundamental loops of string. The same idea applies to the forces of nature as well. We will see that force particles are also associated with particular patterns of string vibration and hence everything, all matter and all forces, is unified under the same rubric of microscopic string oscillations — the "notes" that strings can play.

For the first time in the history of physics we therefore have a framework with the capacity to explain every fundamental feature upon which the universe is constructed. For this reason string theory is sometimes described as possibly being the "theory of everything" (T.O.E.) or the "ultimate" or "final" theory. These grandiose descriptive terms are meant to signify the deepest possible theory of physics — a theory that underlies all others, one that does not require or even allow for a deeper explanatory base. In practice, many string theorists take a more down-to-earth approach and think of a T.O.E. in the more limited sense of a theory that can explain the properties of the fundamental particles and the properties of the forces by which they interact and influence one another. A staunch reductionist would claim that this is no limitation at all, and that in principle absolutely everything, from the big bang to daydreams, can be described in terms of underlying microscopic physical processes involving the fundamental constituents of matter. If you understand everything about the ingredients, the reductionist argues, you understand everything.

The reductionist philosophy easily ignites heated debate. Many find it fatuous and downright repugnant to claim that the wonders of life and the universe are mere reflections of microscopic particles engaged in a pointless dance fully choreographed by the laws of physics. Is it really the case that feelings of joy, sorrow, or boredom are nothing but chemical reactions in the brain — reactions between molecules and atoms that, even more microscopically, are reactions between some of the particles in Table 1.1, which are really just vibrating strings? In response to this line of criticism, Nobel laureate Steven Weinberg cautions in Dreams of a Final Theory,
At the other end of the spectrum are the opponents of reductionism who are appalled by what they feel to be the bleakness of modern science. To whatever extent they and their world can be reduced to a matter of particles or fields and their interactions, they feel diminished by that knowledge. . . . I would not try to answer these critics with a pep talk about the beauties of modern science. The reductionist worldview is chilling and impersonal. It has to be accepted as it is, not because we like it, but because that is the way the world works.4
Some agree with this stark view, some don't.

Others have tried to argue that developments such as chaos theory tell us that new kinds of laws come into play when the level of complexity of a system increases. Understanding the behavior of an electron or a quark is one thing; using this knowledge to understand the behavior of a tornado is quite another. On this point, most agree. But opinions diverge on whether the diverse and often unexpected phenomena that can occur in systems more complex than individual particles truly represent new physical principles at work, or whether the principles involved are derivative, relying, albeit in a terribly complicated way, on the physical principles governing the enormously large number of elementary constituents. My own feeling is that they do not represent new and independent laws of physics. Although it would be hard to explain the properties of a tornado in terms of the physics of electrons and quarks, I see this as a matter of calculational impasse, not an indicator of the need for new physical laws. But again, there are some who disagree with this view.

What is largely beyond question, and is of primary importance to the journey described in this book, is that even if one accepts the debatable reasoning of the staunch reductionist, principle is one thing and practice quite another. Almost everyone agrees that finding the T.O.E. would in no way mean that psychology, biology, geology, chemistry, or even physics had been solved or in some sense subsumed. The universe is such a wonderfully rich and complex place that the discovery of the final theory, in the sense we are describing here, would not spell the end of science. Quite the contrary: The discovery of the T.O.E. — the ultimate explanation of the universe at its most microscopic level, a theory that does not rely on any deeper explanation — would provide the firmest foundation on which to build our understanding of the world. Its discovery would mark a beginning, not an end. The ultimate theory would provide an unshakable pillar of coherence forever assuring us that the universe is a comprehensible place.


The State of String Theory

The central concern of this book is to explain the workings of the universe according to string theory, with a primary emphasis on the implications that these results have for our understanding of space and time. Unlike many other exposés of scientific developments, the one given here does not address itself to a theory that has been completely worked out, confirmed by vigorous experimental tests, and fully accepted by the scientific community. The reason for this, as we will discuss in subsequent chapters, is that string theory is such a deep and sophisticated theoretical structure that even with the impressive progress that has been made over the last two decades, we still have far to go before we can claim to have achieved full mastery.

And so string theory should be viewed as a work in progress whose partial completion has already revealed astonishing insights into the nature of space, time, and matter. The harmonious union of general relativity and quantum mechanics is a major success. Furthermore, unlike any previous theory, string theory has the capacity to answer primordial questions having to do with nature's most fundamental constituents and forces. Of equal importance, although somewhat harder to convey, is the remarkable elegance of both the answers and the framework for answers that string theory proposes. 

For instance, in string theory many aspects of nature that might appear to be arbitrary technical details — such as the number of distinct fundamental particle ingredients and their respective properties — are found to arise from essential and tangible aspects of the geometry of the universe. If string theory is right, the microscopic fabric of our universe is a richly intertwined multidimensional labyrinth within which the strings of the universe endlessly twist and vibrate, rhythmically beating out the laws of the cosmos. Far from being accidental details, the properties of nature's basic building blocks are deeply entwined with the fabric of space and time.

In the final analysis, though, nothing is a substitute for definitive, testable predictions that can determine whether string theory has truly lifted the veil of mystery hiding the deepest truths of our universe. It may be some time before our level of comprehension has reached sufficient depth to achieve this aim, although, as we will discuss in Chapter 9, experimental tests could provide strong circumstantial support for string theory within the next ten years or so. Moreover, in Chapter 13 we will see that string theory has recently solved a central puzzle concerning black holes, associated with the so-called Bekenstein-Hawking entropy, that has stubbornly resisted resolution by more conventional means for more than twenty-five years. This success has convinced many that string theory is in the process of giving us our deepest understanding of how the universe works.

Edward Witten, one of the pioneers and leading experts in string theory, summarizes the situation by saying that "string theory is a part of twenty-first-century physics that fell by chance into the twentieth century," an assessment first articulated by the celebrated Italian physicist Danielle Amati.5 In a sense, then, it is as if our forebears in the late nineteenth century had been presented with a modern-day supercomputer, without the operating instructions. Through inventive trial and error, hints of the supercomputer's power would have become evident, but it would have taken vigorous and prolonged effort to gain true mastery. The hints of the computer's potential, like our glimpses of string theory's explanatory power, would have provided extremely strong motivation for obtaining complete facility. A similar motivation today energizes a generation of theoretical physicists to pursue a full and precise analytic understanding of string theory.

Witten's remark and those of other experts in the field indicate that it could be decades or even centuries before string theory is fully developed and understood. This may well be true. In fact, the mathematics of string theory is so complicated that, to date, no one even knows the exact equations of the theory. Instead, physicists know only approximations to these equations, and even the approximate equations are so complicated that they as yet have been only partially solved. Nevertheless, an inspiring set of breakthroughs in the latter half of the 1990s — breakthroughs that have answered theoretical questions of hitherto unimaginable difficulty — may well indicate that complete quantitative understanding of string theory is much closer than initially thought. Physicists worldwide are developing powerful new techniques to transcend the numerous approximate methods so far used, collectively piecing together disparate elements of the string theory puzzle at an exhilarating rate.

Surprisingly, these developments are providing new vantage points for reinterpreting some of the basic aspects of the theory that have been in place for some time. For instance, a natural question that may have occurred to you in looking at Figure 1.1 is, Why strings? Why not little frisbee disks? Or microscopic bloblike nuggets? Or a combination of all of these possibilities? As we shall see in Chapter 12, the most recent insights show that these other kinds of ingredients do have an important role in string theory, and have revealed that string theory is actually part of an even grander synthesis currently (and mysteriously) named M-theory. These latest developments will be the subject of the final chapters of this book.

Progress in science proceeds in fits and starts. Some periods are filled with great breakthroughs; at other times researchers experience dry spells. Scientists put forward results, both theoretical and experimental. The results are debated by the community, sometimes they are discarded, sometimes they are modified, and sometimes they provide inspirational jumping-off points for new and more accurate ways of understanding the physical universe. In other words, science proceeds along a zig-zag path toward what we hope will be ultimate truth, a path that began with humanity's earliest attempts to fathom the cosmos and whose end we cannot predict. Whether string theory is an incidental rest stop along this path, a landmark turning point, or in fact the final destination we do not know. But the last two decades of research by hundreds of dedicated physicists and mathematicians from numerous countries have given us well-founded hope that we are on the right and possibly final track.


It is a telling testament of the rich and far-reaching nature of string theory that even our present level of understanding has allowed us to gain striking new insights into the workings of the universe. A central thread in what follows will be those developments that carry forward the revolution in our understanding of space and time initiated by Einstein's special and general theories of relativity. We will see that if string theory is correct, the fabric of our universe has properties that would likely have dazzled even Einstein.


See also


References

  1. ^ "Biography for Brian Greene"Internet Movie Database. Retrieved 2007-10-31.
  2. ^ JR Minkel (Spring 2006). "The String is The Thing - Brian Greene Unravels the Fabric of the Universe"Columbia Magazine (Columbia University). Retrieved 2007-10-31.
  3. a b Overbye, Dennis (June 3, 2008). "An Overflowing Five-Day Banquet of Science and Its Meanings"New York Times.
  4. ^ Boss, Shira. "Brian Greene Has the World on a String". Columbia College Today. Retrieved 16 January 2011.
  5. ^ "Consciousness Emerges in the Ash of Stellar Alchemy"Flickr. Retrieved 2011-03-22.
  6. ^ Was brian greene vegan
  7. ^ "Profile of Brian Greene". Royce Carlton Incorporated. Archived from the original on 2007-08-23. Retrieved 2008-02-17.
  8. ^ Amazon.com's catalog entry
  9. ^ Shapiro, Gary. "New York, Cambridge To Host Citywide Science Festivals"New York Sun. Retrieved 2007-02-25.
  10. ^ "Future-ish Honor". 2010. Retrieved 2010-02-15.



No comments:

Post a Comment