Monday, 12 March 2012

Dark Energy and Alternative ideas


Some theorists think that dark energy and cosmic acceleration are a failure of general relativity on very large scales, larger than superclusters. It is a tremendous extrapolation to think that our law of gravity, which works so well in the solar system, should work without correction on the scale of the universe. 

Most attempts at modifying general relativity, however, have turned out to be either equivalent to theories of quintessence, or inconsistent with observations. It is of interest to note that if the equation for gravity were to approach r instead of r2 at large, intergalactic distances, then the acceleration of the expansion of the universe becomes a mathematical artifact, negating the need for the existence of Dark Energy.


Alternative ideas for dark energy have come from string theory, brane cosmology and the holographic principle, but have not yet proved as compelling as quintessence and the cosmological constant. On string theory, an article in the journal Nature described:
String theories, popular with many particle physicists, make it possible, even desirable, to think that the observable universe is just one of 10500 universes in a grander multiverse, says [Leonard Susskind, a cosmologist at Stanford University in California]. The vacuum energy will have different values in different universes, and in many or most it might indeed be vast. But it must be small in ours because it is only in such a universe that observers such as ourselves can evolve.
Paul Steinhardt in the same article criticizes string theory's explanation of dark energy stating "...Anthropics and randomness don't explain anything... I am disappointed with what most theorists are willing to accept".


In a rather radical departure, an article in the open access journal, Entropy, by Professor Paul Gough, put forward the suggestion that information energy must make a significant contribution to dark energy and that this can be shown by referencing the equation of the state of information in the universe. 

Yet another, "radically conservative" class of proposals aims to explain the observational data by a more refined use of established theories rather than through the introduction of dark energy, focusing, for example, on the gravitational effects of density inhomogeneities, or on consequences of electroweak symmetry breaking in the early universe.

Kunjungi Juga:


Wikipedia

No comments:

Post a Comment