Wednesday, 28 October 2009

Sekolah Pendidikan Robotika Indonesia






Lecture 6    View Now >
1 hr 11 min
  • Topics: Instantaneous Kinematics, Jacobian, Jacobians - Direct Differentiation, Example 1, Scheinman Arm, Basic Jacobian, Position Representations, Cross Product Operator, Velocity Propagation, Example 2Video clip “Locomation Gates with Polypod,” Mark Yim, Stanford University, ICRA 1994 Video Proceedings courtesy IEEE
    (© 1994 IEEE)

  • Transcript: HTML | PDF





YouTube | iTunes | Vyew | WMV Torrent | MP4 Torrent



Lecture Handouts


Handout Name Handout Usage
Jacobian                                               Lectures 6-8 


Assignments

Assignment Solutions Content
Assignment 3 Solutions Lectures 6-8


Sumber:

Universitas Stanford Fakultas Teknik
(Stanford Engineering Everywhere)

Prof. Oussama Khatib, Ph.D. 
(His Web-Site Oussama Khatib)

Professor of Computer Science
Artificial Intelligence Laboratory
Department of Computer Science
Stanford University
Stanford, CA 94305-9010

Office: Gates 144
Phone: (650) 723-9753
Fax: (650) 725-1449
E-Mail: click here


Research Interests
Methodologies and technologies of autonomous robots, cooperative robots, human-centered robotics, haptic interaction, dynamic simulation, virtual environments, augmented teleoperation, and human-friendly robot design.















Indonesian Robotics Education School
Visi

Melahirkan Ahli-ahli Robotika Bertaraf Internasional yang senantiasa Bertafakur, Bertasyakur dan Bertadabur terhadap Keagungan Yang Maha Kuasa


Misi
1. Melahirkan Ahli Robotika Berkualitas Internasional Berkarakteristik Lokal di tiap Kabupaten atau Kota Setiap Tahun Minimal 2 Orang.

2. Kaderisasi yang berkelanjutan dan terarah

Program

1. Mempelajari alat-alat elektronika sederhana di Sekeliling Kehidupan kita

2. Mempelajari bahasa-bahasa pemrograman komputer dengan tekun dan rajin

3. Mengembangkan kurikulum pendidikan Robotika


Langkah Setrategis Sederhana

1. Promosi Kesekolah-sekolah Kejuruan dan Menengah atas untuk membuat club-club kecil penggemar Otomasi, Kendali dan Robotika

2. Mengadakan Ivent-ivent kecil dan sederhana megenai Robotika

3. Istiqomah

Monday, 26 October 2009

Sekolah Pendidikan Robotika Indonesia








Lecture 5    View Now >
1 hr 7 min
  • Topics: Summary - Frame Attachment, Example - RPRR Manipulator, Stanford Scheinman Arm, Stanford Scheinman Arm - DH Table, Forward Kinematics, Stanford Scheinman Arm - T-Matrices, Stanford Scheinman Arm - Final ResultsVideo clip “Brachiation Robot,” Nagoya University, ICRA 1993 Video Proceedings courtesy IEEE
    (© 1993 IEEE)
  • Transcript: HTML | PDF




YouTube | iTunes | Vyew | WMV Torrent | MP4 Torrent


Lecture Handouts


Handout Name Handout Usage
Kinematics-2                                                  Lectures 4-5

Assignments

Assignment Solutions Content


Assignment 2 Solutions Lectures 4-5



Sumber:

Universitas Stanford Fakultas Teknik
(Stanford Engineering Everywhere)

Prof. Oussama Khatib, Ph.D. 
(His Web-Site Oussama Khatib)

Professor of Computer Science
Artificial Intelligence Laboratory
Department of Computer Science
Stanford University
Stanford, CA 94305-9010

Office: Gates 144
Phone: (650) 723-9753
Fax: (650) 725-1449
E-Mail: click here


Research Interests
Methodologies and technologies of autonomous robots, cooperative robots, human-centered robotics, haptic interaction, dynamic simulation, virtual environments, augmented teleoperation, and human-friendly robot design.















Indonesian Robotics Education School
Visi

Melahirkan Ahli-ahli Robotika Bertaraf Internasional yang senantiasa Bertafakur, Bertasyakur dan Bertadabur terhadap Keagungan Yang Maha Kuasa


Misi
1. Melahirkan Ahli Robotika Berkualitas Internasional Berkarakteristik Lokal di tiap Kabupaten atau Kota Setiap Tahun Minimal 2 Orang.

2. Kaderisasi yang berkelanjutan dan terarah

Program

1. Mempelajari alat-alat elektronika sederhana di Sekeliling Kehidupan kita

2. Mempelajari bahasa-bahasa pemrograman komputer dengan tekun dan rajin

3. Mengembangkan kurikulum pendidikan Robotika


Langkah Setrategis Sederhana

1. Promosi Kesekolah-sekolah Kejuruan dan Menengah atas untuk membuat club-club kecil penggemar Otomasi, Kendali dan Robotika

2. Mengadakan Ivent-ivent kecil dan sederhana megenai Robotika

3. Istiqomah

Saturday, 24 October 2009

Sekolah Pendidikan Robotika Indonesia








Lecture 4    View Now >
1 hr 12 min

  • Topics: Manipulator Kinematics, Link Description, Link Connections, Denavit-Hartenberg Parameteres, Summary - DH Parameters, Example - DH Table, Forward KinematicsVideo clip “The Hummingbird,” IBM Watson Research Center, ICRA 1992 Video Proceedings courtesy IEEE
    (© 1992 IEEE)
  • Transcript: HTML | PDF




YouTube | iTunes | Vyew | WMV Torrent | MP4 Torrent



Lecture Handouts


Handout Name Handout Usage
Kinematics-2                                                  Lectures 4-5

Assignments

Assignment Solutions Content


Assignment 2 Solutions Lectures 4-5



Sumber:

Universitas Stanford Fakultas Teknik
(Stanford Engineering Everywhere)

Prof. Oussama Khatib, Ph.D. 
(His Web-Site Oussama Khatib)

Professor of Computer Science
Artificial Intelligence Laboratory
Department of Computer Science
Stanford University
Stanford, CA 94305-9010

Office: Gates 144
Phone: (650) 723-9753
Fax: (650) 725-1449
E-Mail: click here


Research Interests
Methodologies and technologies of autonomous robots, cooperative robots, human-centered robotics, haptic interaction, dynamic simulation, virtual environments, augmented teleoperation, and human-friendly robot design.















Indonesian Robotics Education School
Visi

Melahirkan Ahli-ahli Robotika Bertaraf Internasional yang senantiasa Bertafakur, Bertasyakur dan Bertadabur terhadap Keagungan Yang Maha Kuasa


Misi
1. Melahirkan Ahli Robotika Berkualitas Internasional Berkarakteristik Lokal di tiap Kabupaten atau Kota Setiap Tahun Minimal 2 Orang.

2. Kaderisasi yang berkelanjutan dan terarah

Program

1. Mempelajari alat-alat elektronika sederhana di Sekeliling Kehidupan kita

2. Mempelajari bahasa-bahasa pemrograman komputer dengan tekun dan rajin

3. Mengembangkan kurikulum pendidikan Robotika


Langkah Setrategis Sederhana

1. Promosi Kesekolah-sekolah Kejuruan dan Menengah atas untuk membuat club-club kecil penggemar Otomasi, Kendali dan Robotika

2. Mengadakan Ivent-ivent kecil dan sederhana megenai Robotika

3. Istiqomah

Thursday, 22 October 2009

Sekolah Pendidikan Robotika Indonesia







Lecture 3    View Now >
1 hr 17 min

  • Topics: Homogeneous Transform Interpretations, Compound Transformations, Spatial Descriptions, Rotation Representations, Euler Angles, Fixed Angles, Example - Singularities, Euler Parameters, Example - RotationsVideo clip “Flexible Microactuator,” Toshiba, ICRA 1991 Video Proceedings courtesy IEEE
    (© 1991 IEEE)
  • Transcript: HTML | PDF




YouTube | iTunes | Vyew | WMV Torrent | MP4 Torrent




Lecture Handouts


Handout Name Handout Usage
Course Introduction Lecture 1
Kinematics-1 Lecture 1-3


Assignments

Assignment Solutions Content
Assignment 1 Solutions Lecture 3



Sumber:

Universitas Stanford Fakultas Teknik
(Stanford Engineering Everywhere)

Prof. Oussama Khatib, Ph.D. 
(His Web-Site Oussama Khatib)



Professor of Computer Science
Artificial Intelligence Laboratory
Department of Computer Science
Stanford University
Stanford, CA 94305-9010

Office: Gates 144
Phone: (650) 723-9753
Fax: (650) 725-1449
E-Mail: click here


Research Interests
Methodologies and technologies of autonomous robots, cooperative robots, human-centered robotics, haptic interaction, dynamic simulation, virtual environments, augmented teleoperation, and human-friendly robot design.















Indonesian Robotics Education School
Visi

Melahirkan Ahli-ahli Robotika Bertaraf Internasional yang senantiasa Bertafakur, Bertasyakur dan Bertadabur terhadap Keagungan Yang Maha Kuasa


Misi
1. Melahirkan Ahli Robotika Berkualitas Internasional Berkarakteristik Lokal di tiap Kabupaten atau Kota Setiap Tahun Minimal 2 Orang.

2. Kaderisasi yang berkelanjutan dan terarah

Program

1. Mempelajari alat-alat elektronika sederhana di Sekeliling Kehidupan kita

2. Mempelajari bahasa-bahasa pemrograman komputer dengan tekun dan rajin

3. Mengembangkan kurikulum pendidikan Robotika


Langkah Setrategis Sederhana

1. Promosi Kesekolah-sekolah Kejuruan dan Menengah atas untuk membuat club-club kecil penggemar Otomasi, Kendali dan Robotika

2. Mengadakan Ivent-ivent kecil dan sederhana megenai Robotika

3. Istiqomah

Tuesday, 20 October 2009

Sekolah Pendidikan Robotika Indonesia









Lecture 2    View Now >
1 hr 8 min
  • Topics: Spatial Descriptions, Generalized Coordinates, Operational Coordinates, Rotation Matrix, Example - Rotation Matrix, Translations, Example - Homogeneous Transform, Operators, General OperatorsVideo clip “GH Walking Machines: Passive Walking,” Tad McGreer, Fraser Univ. British Columbia, ICRA 1991 Video Proceedings, courtesy IEEE.
    (© 1991 IEEE)

  • Transcript: HTML | PDF




YouTube | iTunes | Vyew | WMV Torrent | MP4 Torrent


Lecture Handouts


Handout Name Handout Usage
Course Introduction Lecture 1
Kinematics-1 Lecture 1-3


Sumber:

Universitas Stanford Fakultas Teknik
(Stanford Engineering Everywhere)

Prof. Oussama Khatib, Ph.D. 
(His Web-Site Oussama Khatib)

Professor of Computer Science
Artificial Intelligence Laboratory
Department of Computer Science
Stanford University
Stanford, CA 94305-9010

Office: Gates 144
Phone: (650) 723-9753
Fax: (650) 725-1449
E-Mail: click here


Research Interests
Methodologies and technologies of autonomous robots, cooperative robots, human-centered robotics, haptic interaction, dynamic simulation, virtual environments, augmented teleoperation, and human-friendly robot design.















Indonesian Robotics Education School
Visi

Melahirkan Ahli-ahli Robotika Bertaraf Internasional yang senantiasa Bertafakur, Bertasyakur dan Bertadabur terhadap Keagungan Yang Maha Kuasa


Misi
1. Melahirkan Ahli Robotika Berkualitas Internasional Berkarakteristik Lokal di tiap Kabupaten atau Kota Setiap Tahun Minimal 2 Orang.

2. Kaderisasi yang berkelanjutan dan terarah

Program

1. Mempelajari alat-alat elektronika sederhana di Sekeliling Kehidupan kita

2. Mempelajari bahasa-bahasa pemrograman komputer dengan tekun dan rajin

3. Mengembangkan kurikulum pendidikan Robotika


Langkah Setrategis Sederhana

1. Promosi Kesekolah-sekolah Kejuruan dan Menengah atas untuk membuat club-club kecil penggemar Otomasi, Kendali dan Robotika

2. Mengadakan Ivent-ivent kecil dan sederhana megenai Robotika

3. Istiqomah

Monday, 19 October 2009

Sekolah Pendidikan Robotika Indonesia






Lecture 1    View Now >
58 min*
  • Topics: Course Overview, History of Robotics Video, Robotics Applications, Related Stanford Robotics Courses, Lecture and Reading Schedule, Manipulator Kinematics, Manipulator Dynamics, Manipulator Control, Manipulator Force Control, Advanced Topics
  • Transcript: HTML | PDF





YouTube | iTunes | Vyew | WMV Torrent | MP4 Torrent


Lecture Handouts


Handout Name Handout Usage
Course Introduction Lecture 1
Kinematics-1 Lecture 1-3


Sumber:

Universitas Stanford Fakultas Teknik
(Stanford Engineering Everywhere)

Prof. Oussama Khatib, Ph.D. 
(His Web-Site Oussama Khatib)

Professor of Computer Science
Artificial Intelligence Laboratory
Department of Computer Science
Stanford University
Stanford, CA 94305-9010

Office: Gates 144
Phone: (650) 723-9753
Fax: (650) 725-1449
E-Mail: click here


Research Interests
Methodologies and technologies of autonomous robots, cooperative robots, human-centered robotics, haptic interaction, dynamic simulation, virtual environments, augmented teleoperation, and human-friendly robot design.















Indonesian Robotics Education School
Visi

Melahirkan Ahli-ahli Robotika Bertaraf Internasional yang senantiasa Bertafakur, Bertasyakur dan Bertadabur terhadap Keagungan Yang Maha Kuasa


Misi
1. Melahirkan Ahli Robotika Berkualitas Internasional Berkarakteristik Lokal di tiap Kabupaten atau Kota Setiap Tahun Minimal 2 Orang.

2. Kaderisasi yang berkelanjutan dan terarah

Program

1. Mempelajari alat-alat elektronika sederhana di Sekeliling Kehidupan kita

2. Mempelajari bahasa-bahasa pemrograman komputer dengan tekun dan rajin

3. Mengembangkan kurikulum pendidikan Robotika


Langkah Setrategis Sederhana

1. Promosi Kesekolah-sekolah Kejuruan dan Menengah atas untuk membuat club-club kecil penggemar Otomasi, Kendali dan Robotika

2. Mengadakan Ivent-ivent kecil dan sederhana megenai Robotika

3. Istiqomah
 

Sunday, 18 October 2009

Sekolah Pendidikan Robotika Indonesia



Indonesian Robotics Education School
Visi

Melahirkan Ahli-ahli Robotika Bertaraf Internasional yang senantiasa Bertafakur, Bertasyakur dan Bertadabur terhadap Keagungan Yang Maha Kuasa


Misi
1. Melahirkan Ahli Robotika Berkualitas Internasional Berkarakteristik Lokal di tiap Kabupaten atau Kota Setiap Tahun Minimal 2 Orang.

2. Kaderisasi yang berkelanjutan dan terarah

Program

1. Mempelajari alat-alat elektronika sederhana di Sekeliling Kehidupan kita

2. Mempelajari bahasa-bahasa pemrograman komputer dengan tekun dan rajin

3. Mengembangkan kurikulum pendidikan Robotika


Langkah Setrategis Sederhana

1. Promosi Kesekolah-sekolah Kejuruan dan Menengah atas untuk membuat club-club kecil penggemar Otomasi, Kendali dan Robotika

2. Mengadakan Ivent-ivent kecil dan sederhana megenai Robotika

3. Istiqomah

Robot adalah sebuah alat mekanik yang dapat melakukan tugas fisik, baik menggunakan pengawasan dan kontrol manusia, ataupun menggunakan program yang telah didefinisikan terlebih dulu (kecerdasan buatan). Robot biasanya digunakan untuk tugas yang berat, berbahaya, pekerjaan yang berulang dan kotor. Biasanya kebanyakan robot industri digunakan dalam bidang produksi. Penggunaan robot lainnya termasuk untuk pembersihan limbah beracun, penjelajahan bawah air dan luar angkasa, pertambangan, pekerjaan "cari dan tolong" (search and rescue), dan untuk pencarian tambang. Belakangan ini robot mulai memasuki pasaran konsumen di bidang hiburan, dan alat pembantu rumah tangga, seperti penyedot debu, dan pemotong rumput.

Jaringan/Networking

1. Jawa Barat

a. Ciamis
Koordinator:

Arip Nurahman & Bambang Achdiyat



b. Banjar

Koordinator: Karizal Muharom



c. Karawang

Koordinator:

Angga Fuja Widiana



d. Tasik
Koordinator:

e. Garut
Koordinator:
Iqbal Robiyana

f. Bandung Raya
Koordinator:
Eka Kadarisman & Maman Tariman


g. Cianjur dan Sukabumi

Koordinator:Hana Pertiwi

(Hana dan Teman-teman KOMPOR UPI)



2. Jakarta

Koordinator:

Ridwan Firdaus

3. Banten

Koordinator:

Rizkiyana P. Murbakara & Deden Anugrah


4. Bali

Koordinator: I Gde Eka Dirgayusa



5. Irian Jaya/Papua

6. Sumatra

7. Kalimantan

8. Sulawesi

Hubungan Kerjasama

http://mit4indonesia.blogspot.com/

http://irmmuinsmansaban.blogspot.com/2008/07/staf-of-applied-sciences-technology.html

"Bayangkan bila sebuah konsep yang sangat canggih, cutting edge seperti Nano technology, Robotika, Super Computer, Aero Space Technology tidak cuma dikenal para pakar teknologi, profesor, tapi bahkan bisa mulai dikenal oleh anak-anak Sekolah Dasar. Jutaan anak-anak di seluruh Indonesia."

"Tapi sekali lagi, Hati Manusianya yang harus sangat ditingkatkan agar kebaikan dan kebijaksanaannya membuat lingkungan dan hidup ini jauh lebih baik dan bermakna, Semoga!"

Wallohulam bissawab! Semoga Bermanfaat!

Wasalm wrw.b.

http://www.youtube.com/user/RangerIntTV#p/c/FE19B31010AACC69


http://www.engadget.com/
http://www.rec.ri.cmu.edu/

KEUATAN DARI FOKUS

Orang Italia memiliki pepatah yang sangat bagus, bunyinya: “Often, he who does too much does too little.” Terjemahan bebasnya kira-kira begini: Seseorang yang mengerjakan terlalu banyak (tidak fokus), biasanya mendapatkan hasil yang sangat sedikit.
Senada dengan itu orang terkaya dunia, Bill Gates juga pernah berucap:


My success, part of it certainly, is that I have focused on a few things.

Jadi Bill Gates berbagi ilmu, bahwa ternyata ia berhasil menjadi orang terkaya dunia karena dari awal perjalanan bisnisnya (Microsoft) Ia telah memutuskan untuk berfokus hanya pada beberapa hal saja, yakni hal-hal yang sesuai dengan potensi yang ia miliki, khusunya sebagai seorang creator atau pencipta suatu ide/produk.
Semoga Bermanfaat!

Wednesday, 14 October 2009

Groundbreaking Achievements Concerning the Transmission of Light in Fibers for Optical Communication

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2009 with one half to
Charles K. Kao
Standard Telecommunication Laboratories, Harlow, UK, and Chinese University of Hong Kong
"for groundbreaking achievements concerning the transmission of light in fibers for optical communication"
and the other half jointly to
Willard S. Boyle and George E. Smith
Bell Laboratories, Murray Hill, NJ, USA
"for the invention of an imaging semiconductor circuit – the CCD sensor"

 

The masters of light

This year's Nobel Prize in Physics is awarded for two scientific achievements that have helped to shape the foundations of today’s networked societies. They have created many practical innovations for everyday life and provided new tools for scientific exploration. In 1966, Charles K. Kao made a discovery that led to a breakthrough in fiber optics. He carefully calculated how to transmit light over long distances via optical glass fibers. With a fiber of purest glass it would be possible to transmit light signals over 100 kilometers, compared to only 20 meters for the fibers available in the 1960s. Kao's enthusiasm inspired other researchers to share his vision of the future potential of fiber optics. The first ultrapure fiber was successfully fabricated just four years later, in 1970.

Today optical fibers make up the circulatory system that nourishes our communication society. These low-loss glass fibers facilitate global broadband communication such as the Internet. Light flows in thin threads of glass, and it carries almost all of the telephony and data traffic in each and every direction. Text, music, images and video can be transferred around the globe in a split second.

If we were to unravel all of the glass fibers that wind around the globe, we would get a single thread over one billion kilometers long – which is enough to encircle the globe more than 25 000 times – and is increasing by thousands of kilometers every hour.

A large share of the traffic is made up of digital images, which constitute the second part of the award. In 1969 Willard S. Boyle and George E. Smith invented the first successful imaging technology using a digital sensor, a CCD (Charge-Coupled Device). The CCD technology makes use of the photoelectric effect, as theorized by Albert Einstein and for which he was awarded the 1921 year's Nobel Prize. By this effect, light is transformed into electric signals. The challenge when designing an image sensor was to gather and read out the signals in a large number of image points, pixels, in a short time.

The CCD is the digital camera's electronic eye. It revolutionized photography, as light could now be captured electronically instead of on film. The digital form facilitates the processing and distribution of these images. CCD technology is also used in many medical applications, e.g. imaging the inside of the human body, both for diagnostics and for microsurgery.

Digital photography has become an irreplaceable tool in many fields of research. The CCD has provided new possibilities to visualize the previously unseen. It has given us crystal clear images of distant places in our universe as well as the depths of the oceans.
Read more about this year's prize
Information for the Public (pdf)
Scientific Background (pdf)
To read the text you need Acrobat Reader.
Links and Further Reading
 

Charles Kuen Kao, British and US citizen. Born 1933 in Shanghai, China. Ph.D. in Electrical Engineering 1965 from University of London, UK. Director of Engineering at Standard Telecommunication Laboratories, Harlow, UK. Vice-chancellor, Chinese University of Hong Kong. Retired 1996.
www.ieeeghn.org/wiki/index.php/Oral-History:Charles_Kao
Willard Sterling Boyle, Canadian and US citizen. Born 1924 in Amherst, NS, Canada. Ph.D. in Physics 1950 from McGill University, QC, Canada. Executive Director of Communication Sciences Division, Bell Laboratories, Murray Hill, NJ, USA. Retired 1979.
www.science.ca/scientists/scientistprofile.php?pID=129
George Elwood Smith, US citizen. Born 1930 in White Plains, NY, USA. Ph.D. in Physics 1959 from University of Chicago, IL, USA. Head of VLSI Device Department, Bell Laboratories, Murray Hill, NJ, USA. Retired 1986.
www.ieeeghn.org/wiki/index.php/Oral-History:George_E_Smith
Prize amount: SEK 10 million. Kao is awarded one half, Boyle and Smith share the other half.

Contact persons: Erik Huss, Press Officer, Phone +46 8 673 95 44, mobile +46 70 673 96 50, erik.huss@kva.se
Annika Moberg, Editor, Phone +46 8 673 95 22, Mobile +46 70 263 74 46, annika.moberg@kva.se

Wednesday, 7 October 2009

Indonesian Space Sciences & Technology School

Indonesian Space Sciences & Technology School

A rocket engine or simply "rocket" is a jet engine[1] that uses only propellant mass for forming its high speed propulsive jet. Rocket engines are reaction engines and obtain thrust in accordance with Newton's third law. Since they need no external material to form their jet, rocket engines can be used for spacecraft propulsion as well as terrestrial uses, such as missiles. Most rocket engines are internal combustion engines, although non combusting forms also exist.

Rocket engines as a group, have the highest exhaust velocities, are by far the lightest, and are the most energy efficient (at least at very high speed) of all types of jet engines. However, for the thrust they give, due to the high exhaust velocity and relatively low specific energy of rocket propellant, they consume propellant very rapidly.

Types of rocket engines

Physically powered

Type Description Advantages Disadvantages
water rocket Partially filled pressurised carbonated drinks container with tail and nose weighting Very simple to build Altitude typically limited to a few hundred feet or so (world record is 623 meters/2044 feet)
cold gas thruster A non combusting form, used for vernier thrusters Non contaminating exhaust Extremely low performance
hot water rocket Hot water is stored in a tank at high temperature/pressure and turns to steam in nozzle Simple, fairly safe, under 200 seconds Isp Low overall performance due to heavy tank

Chemically powered

Type Description Advantages Disadvantages
Solid rocket Ignitable, self sustaining solid fuel/oxidiser mixture ("grain") with central hole and nozzle Simple, often no moving parts, reasonably good mass fraction, reasonable Isp. A thrust schedule can be designed into the grain. Once lit, extinguishing it is difficult although often possible, cannot be throttled in real time; handling issues from ignitable mixture, lower performance than liquid rockets, if grain cracks it can block nozzle with disastrous results, cracks burn and widen during burn. Refuelling grain harder than simply filling tanks, Lower specific Impulse than Liquid Rockets.
Hybrid rocket Separate oxidiser/fuel, typically oxidiser is liquid and kept in a tank, the other solid with central hole Quite simple, solid fuel is essentially inert without oxidiser, safer; cracks do not escalate, throttleable and easy to switch off. Some oxidisers are monopropellants, can explode in own right; mechanical failure of solid propellant can block nozzle (very rare with rubberised propellant), central hole widens over burn and negatively affects mixture ratio.
Monopropellant rocket Propellant such as Hydrazine, Hydrogen Peroxide or Nitrous Oxide, flows over catalyst and exothermically decomposes and hot gases are emitted through nozzle Simple in concept, throttleable, low temperatures in combustion chamber catalysts can be easily contaminated, monopropellants can detonate if contaminated or provoked, Isp is perhaps 1/3 of best liquids
Liquid Bipropellant rocket Two fluid (typically liquid) propellants are introduced through injectors into combustion chamber and burnt Up to ~99% efficient combustion with excellent mixture control, throttleable, can be used with turbopumps which permits incredibly lightweight tanks, can be safe with extreme care Pumps needed for high performance are expensive to design, huge thermal fluxes across combustion chamber wall can impact reuse, failure modes include major explosions, a lot of plumbing is needed.
Dual mode propulsion rocket Rocket takes off as a bipropellant rocket, then turns to using just one propellant as a monopropellant Simplicity and ease of control Lower performance than bipropellants
Tripropellant rocket Three different propellants (usually hydrogen, hydrocarbon and liquid oxygen) are introduced into a combustion chamber in variable mixture ratios, or multiple engines are used with fixed propellant mixture ratios and throttled or shut down Reduces take-off weight, since hydrogen is lighter; combines good thrust to weight with high average Isp, improves payload for launching from Earth by a sizeable percentage Similar issues to bipropellant, but with more plumbing, more R&D
Air-augmented rocket Essentially a ramjet where intake air is compressed and burnt with the exhaust from a rocket Mach 0 to Mach 4.5+ (can also run exoatmospheric), good efficiency at Mach 2 to 4 Similar efficiency to rockets at low speed or exoatmospheric, inlet difficulties, a relatively undeveloped and unexplored type, cooling difficulties, very noisy, thrust/weight ratio is similar to ramjets.
Turborocket A combined cycle turbojet/rocket where an additional oxidizer such as oxygen is added to the airstream to increase maximum altitude Very close to existing designs, operates in very high altitude, wide range of altitude and airspeed Atmospheric airspeed limited to same range as turbojet engine, carrying oxidizer like LOX can be dangerous. Much heavier than simple rockets.
Precooled jet engine / LACE (combined cycle with rocket) Intake air is chilled to very low temperatures at inlet before passing through a ramjet or turbojet engine. Can be combined with a rocket engine for orbital insertion. Easily tested on ground. High thrust/weight ratios are possible (~14) together with good fuel efficiency over a wide range of airspeeds, mach 0-5.5+; this combination of efficiencies may permit launching to orbit, single stage, or very rapid intercontinental travel. Exists only at the lab prototyping stage. Examples include RB545, SABRE, ATREX

Electrically powered

Type Description Advantages Disadvantages
Resistojet rocket (electric heating) A monopropellant is electrically heated by a filament for extra performance Higher Isp than monopropellant alone, about 40% higher. Uses a lot of power and hence gives typically low thrust
Arcjet rocket (chemical burning aided by electrical discharge) Similar to resistojet in concept but with inert propellant, except an arc is used which allows higher temperatures 1600 seconds Isp Very low thrust and high power, performance is similar to Ion drive.
Pulsed plasma thruster (electric arc heating; emits plasma) Plasma is used to erode a solid propellant High Isp , can be pulsed on and off for attitude control Low energetic efficiency
Variable specific impulse magnetoplasma rocket Microwave heated plasma with magnetic throat/nozzle Variable Isp from 1000 seconds to 10,000 seconds similar thrust/weight ratio with ion drives (worse), thermal issues, as with ion drives very high power requirements for significant thrust, really needs advanced nuclear reactors, never flown, requires low temperatures for superconductors to work

Solar powered

The Solar thermal rocket would make use of solar power to directly heat reaction mass, and therefore does not require an electrical generator as most other forms of solar-powered propulsion do. A solar thermal rocket only has to carry the means of capturing solar energy, such as concentrators and mirrors. The heated propellant is fed through a conventional rocket nozzle to produce thrust. The engine thrust is directly related to the surface area of the solar collector and to the local intensity of the solar radiation and inversely proportional to the Isp.
Type Description Advantages Disadvantages
Solar thermal rocket Propellant is heated by solar collector Simple design. Using hydrogen propellant, 900 seconds of Isp is comparable to Nuclear Thermal rocket, without the problems and complexity of controlling a fission reaction. Using higher–molecular-weight propellants, for example water, lowers performance. Only useful once in space, as thrust is fairly low, but hydrogen is not easily stored in space, otherwise moderate/low Isp if higher–molecular-mass propellants are used

Beam powered

Type Description Advantages Disadvantages
light beam powered rocket Propellant is heated by light beam (often laser) aimed at vehicle from a distance, either directly or indirectly via heat exchanger simple in principle, in principle very high exhaust speeds can be achieved ~1 MW of power per kg of payload is needed to achieve orbit, relatively high accelerations, lasers are blocked by clouds, fog, reflected laser light may be dangerous, pretty much needs hydrogen monopropellant for good performance which needs heavy tankage, some designs are limited to ~600 seconds due to reemission of light since propellant/heat exchanger gets white hot
microwave beam powered rocket Propellant is heated by microwave beam aimed at vehicle from a distance microwaves avoid reemission of energy, so ~900 seconds exhaust speeds might be achieveable ~1 MW of power per kg of payload is needed to achieve orbit, relatively high accelerations, microwaves are absorbed to a degree by rain, reflected microwaves may be dangerous, pretty much needs hydrogen monopropellant for good performance which needs heavy tankage, transmitter diameter is measured in kilometres to achieve a fine enough beam to hit a vehicle at up to 100 km.

Nuclear powered

Nuclear propulsion includes a wide variety of propulsion methods that use some form of nuclear reaction as their primary power source. Various types of nuclear propulsion have been proposed, and some of them tested, for spacecraft applications:
Type Description Advantages Disadvantages
Radioisotope rocket/"Poodle thruster" (radioactive decay energy) Heat from radioactive decay is used to heat hydrogen about 700–800 seconds, almost no moving parts low thrust/weight ratio.
Nuclear thermal rocket (nuclear fission energy) propellant (typ. hydrogen) is passed through a nuclear reactor to heat to high temperature Isp can be high, perhaps 900 seconds or more, above unity thrust/weight ratio with some designs Maximum temperature is limited by materials technology, some radioactive particles can be present in exhaust in some designs, nuclear reactor shielding is heavy, unlikely to be permitted from surface of the Earth, thrust/weight ratio is not high.
Gas core reactor rocket (nuclear fission energy) Nuclear reaction using a gaseous state fission reactor in intimate contact with propellant Very hot propellant, not limited by keeping reactor solid, Isp between 1500 and 3000 seconds but with very high thrust Difficulties in heating propellant without losing fissionables in exhaust, massive thermal issues particularly for nozzle/throat region, exhaust almost inherently highly radioactive. Nuclear lightbulb variants can contain fissionables, but cut Isp in half.
Fission-fragment rocket (nuclear fission energy) Fission products are directly exhausted to give thrust
Theoretical only at this point.
Fission sail (nuclear fission energy) A sail material is coated with fissionable material on one side No moving parts, works in deep space Theoretical only at this point.
Nuclear salt-water rocket (nuclear fission energy) Nuclear salts are held in solution, caused to react at nozzle Very high Isp, very high thrust Thermal issues in nozzle, propellant could be unstable, highly radioactive exhaust. Theoretical only at this point.
Nuclear pulse propulsion (exploding fission/fusion bombs) Shaped nuclear bombs are detonated behind vehicle and blast is caught by a 'pusher plate' Very high Isp, very high thrust/weight ratio, no show stoppers are known for this technology Never been tested, pusher plate may throw off fragments due to shock, minimum size for nuclear bombs is still pretty big, expensive at small scales, nuclear treaty issues, fallout when used below Earth's magnetosphere.
Antimatter catalyzed nuclear pulse propulsion (fission and/or fusion energy) Nuclear pulse propulsion with antimatter assist for smaller bombs Smaller sized vehicle might be possible Containment of antimatter, production of antimatter in macroscopic quantities isn't currently feasible. Theoretical only at this point.
Fusion rocket (nuclear fusion energy) Fusion is used to heat propellant Very high exhaust velocity Largely beyond current state of the art.
Antimatter rocket (annihilation energy) Antimatter annihilation heats propellant Extremely energetic, very high theoretical exhaust velocity Problems with antimatter production and handling; energy losses in neutrinos, gamma rays, muons; thermal issues. Theoretical only at this point

External links