- Chemistry, Kary B. Mullis
- Chemistry, Michael Smith
- Economics, Robert W. Fogel
- Economics, Douglass C. North
- Literature, Toni Morrison
- Medicine, Richard J. Roberts
- Medicine, Phillip A. Sharp
- Peace, F.W. de Klerk
- Peace, Nelson Mandela
- Physics, Russell A. Hulse
- Physics, Joseph H. Taylor Jr.
- Chemistry, Rudolph A. Marcus
- Economics, Gary S. Becker
- Literature, Derek Walcott
- Medicine, Edmond H. Fischer
- Medicine, Edwin G. Krebs
- Peace, Rigoberta Menchú Tum
- Physics, Georges Charpak
- Chemistry, Richard R. Ernst
- Economics, Ronald H. Coase
- Literature, Nadine Gordimer
- Medicine, Erwin Neher
- Medicine, Bert Sakmann
- Peace, Aung San Suu Kyi
- Physics, Pierre-Gilles de Gennes
- Chemistry, Elias James Corey
- Economics, Harry M. Markowitz
- Economics, Merton H. Miller
- Economics, William F. Sharpe
- Literature, Octavio Paz
- Medicine, Joseph E. Murray
- Medicine, E. Donnall Thomas
- Peace, Mikhail Gorbachev
- Physics, Jerome I. Friedman
- Physics, Henry W. Kendall
- Physics, Richard E. Taylor
- Chemistry, Sidney Altman
- Chemistry, Thomas R. Cech
- Economics, Trygve Haavelmo
- Literature, Camilo José Cela
- Medicine, J. Michael Bishop
- Medicine, Harold E. Varmus
- Peace, The 14th Dalai Lama
- Physics, Hans G. Dehmelt
- Physics, Wolfgang Paul
- Physics, Norman F. Ramsey
- Chemistry, Johann Deisenhofer
- Chemistry, Robert Huber
- Chemistry, Hartmut Michel
- Economics, Maurice Allais
- Literature, Naguib Mahfouz
- Medicine, Sir James W. Black
- Medicine, Gertrude B. Elion
- Medicine, George H. Hitchings
- Peace, United Nations Peacekeeping Forces
- Physics, Leon M. Lederman
- Physics, Melvin Schwartz
- Physics, Jack Steinberger
- Chemistry, Donald J. Cram
- Chemistry, Jean-Marie Lehn
- Chemistry, Charles J. Pedersen
- Economics, Robert M. Solow
- Literature, Joseph Brodsky
- Medicine, Susumu Tonegawa
- Peace, Oscar Arias Sánchez
- Physics, J. Georg Bednorz
- Physics, K. Alex Müller
- Chemistry, Dudley R. Herschbach
- Chemistry, Yuan T. Lee
- Chemistry, John C. Polanyi
- Economics, James M. Buchanan Jr.
- Literature, Wole Soyinka
- Medicine, Stanley Cohen
- Medicine, Rita Levi-Montalcini
- Peace, Elie Wiesel
- Physics, Gerd Binnig
- Physics, Heinrich Rohrer
- Physics, Ernst Ruska
Friday, 27 May 2011
Bagimana Kita Belajar Kepada Para Peraih Nobel?
In many ways, the Nobel Foundation is similar to an investment company, in that it invests Nobel's money to create a solid funding base for the prizes and the administrative activities.
The Nobel Foundation is exempt from all taxes in Sweden (since 1946) and from investment taxes in the United States (since 1953).
Since the 1980s, the Foundation's investments have become more profitable and as of 31 December 2007, the assets controlled by the Nobel Foundation amounted to 3.628 billion Swedish kronor (c. US$560 million).
Untuk Mempelajari kehebatan para peraih nobel kita harus mengenal perjalanan kehidupan mereka, membentuk mental ilmiah yang kuat, serta membangun komunitas ilmiah di lingkungan kita.
Sumber:
Nobel Prize
Wikipedia.
Diposting oleh Astrophysics Boy di 13:46:00 0 komentar
Wednesday, 18 May 2011
Presidential Lecture
Presidential Lecture
Kebutuhan Energi Kelistrikan Indonesia di masa depan
(Oleh: Prof. B.J. Habibie)
Dalam keadaan mendesaknya
masalah-masalah kehidupan kongkrit yang dihadapi bagian dunia yang masih
terbelakang, tidak banyak gunanya menggolong-golongkan teknologi ke
dalam 'teknologi sederhana,' 'teknologi menengah,' dan 'teknologi
tinggi'. Jauh lebih berguna mempertanyakan teknologi manakah yang dapat
memecahkan suatu masalah yang kongkrit, tanpa memperdulikan apakah
teknologi yang tepat itu adalah teknologi primitif, menengah atau
canggih, dan tanpa mempersoalkan di mana teknologi tersebut pertama kali
dikembangkan.
~Prof. Habibie~
Unduh File PPTnya disini
Seiring
dengan meningkatnya populasi penduduk dan tumbuhnya perekonomian,
kebutuhan energi listrik terus meningkat. Pada 2030 mendatang, kebutuhan
listrik akan mencapai sekitar 33,3 triliun kWh. Jumlah tersebut setara
dengan lebih dari dua kali lipat energi listrik yang diproduksi pada
2005.
Bagaimana
dengan Indonesia? Data yang dilansir www. detik.com menyebutkan bahwa
pada 2025, kebutuhan batu bara untuk bahan bakar pembangkit listrik
tenaga uap (PLTU) diperkirakan mencapai 150 juta ton per tahun.
Sementara itu, tingkat konsumsi listrik akan mencapai 49 gigawat pada
tahun yang sama.
Produksi
tenaga listrik, selanjutnya disitribusikan dan digunakan tidak lepas
dari lingkungan hidup. Penggunaan bahan bakar untuk pembangkit listrik
yang menghasilkan gas rumah kaca seperti karbondioksida tidak lagi
dianjurkan. Karena, emisi gas rumah kaca telah menjadi kontributor
peningkatan suhu bumi dan pemanasan global.
Menghasilkan
tenaga listrik dengan membakar batu bara, dan gas alam dapat
meningkatkan konsentrasi karbondioksida sehingga meningkatkan efek rumah
kaca dan pemanasan global. Tenaga nuklir juga akan berpengaruh negatif
pada lingkungan hidup. Pembangkit listrik tenaga air (PLTA) sangat
membutuhkan arus air dari bendungan untuk menggerakan turbinnya.
Banyak
pihak yang mempromosikan penggunaan sumber daya lain untuk
membangkitkan listrik seperti angin dan panas bumi. Sumber daya yang
‘hijau’ akan memberikan dua keunggulan utama, termasuk tidak menimbulkan
polusi udara dan jejak karbon.
Tenaga
surya dan angin pun memiliki keterbatasan karena sumber daya ini tidak
selalu tersedia. Dengan kata lain – matahari tidak selalu bersinar dan
angin tidak berhembus setiap saat. Kelemahan lain adalah biasanya kedua
sumber daya ini sulit didapat di daerah – daerah yang justru membutuhkan
tenaga listrik.
Integrasi
pembangkit listrik dan tenaga ‘hijau’ ke dalam power supply, serta
meningkatkan penghematan energi dan mengurangi puncak kebutuhan listrik,
adalah alasan mengapa pemerintah, perusahaan teknologi, aktivis
lingkungan hidup dan pendukung penghematan energi semakin memusatkan
perhatian mereka pada upaya memodernisasikan grid-grid yang
mendistribusikan listrik dari pembangkit listrik ke pelanggan.
Agar
kita menggunakan lebih banyak sumber energi yang ramah lingkungan dan
mendorong transmisi, pendistribusian dan penggunaan listrik secara lebih
canggih, grid-grid listrik harus berubah menjadi ‘lebih pintar’. Oleh
karena itu, tantangan yang sebenarnya adalah membawa grid listrik dari
abad ke-20 ke abad ke-21.
Diposting oleh Astrophysics Boy di 05:43:00 0 komentar
Label: Presidential Lecture
Saturday, 14 May 2011
Kapal Luar Angkasa dalam Pengembangan
- Orion spacecraft
- Kliper - Russian ' Clipper '
- H-II Transfer Vehicle
- India Chandrayan-1 lunar probe
- CNES Mars Netlander
- James Webb Space Telescope (delayed)
- Kepler Mission Planet Searcher
- ESA Darwin probe
- Herschel Space Observatory
- Mars Science Laboratory rover
- Shenzhou spacecraft Cargo
- Terrestrial Planet Finder probe
- X-37
- SpaceX Dragon manned spacecraft
- System F6 - a DARPA Fractionated Spacecraft demonstrator
Wikipedia
Diposting oleh Astrophysics Boy di 14:18:00 0 komentar
Wednesday, 11 May 2011
Indonesian Space Force Command
Indonesian Space Force Command
Komando
Komando
Untuk Keamanan Luar Angkasa
Dari Angkatan Antariksa Indonesia
“I am prepared to die, but there is no cause for which I am prepared to kill.”
~Mahatma Gandhi~
Helicopter | |||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
An LAPD Bell 206 | |||||||||||||||||||||||||||||||||||||||||
|
A helicopter is a type of rotorcraft in which lift and thrust are supplied by one or more engine driven rotors. In contrast with fixed-wing aircraft, this allows the helicopter to take off and land vertically, to hover, and to fly forwards, backwards, and laterally. These attributes allow helicopters to be used in congested or isolated areas where fixed-wing aircraft would not be able to take off or land. The capability to efficiently hover for extended periods of time allows a helicopter to accomplish tasks that fixed-wing aircraft and other forms of vertical takeoff and landing aircraft cannot perform.
Uses
Due to the operating characteristics of the helicopter—its ability to takeoff and land vertically, and to hover for extended periods of time, as well as the aircraft's handling properties under low airspeed conditions—it has been chosen to conduct tasks that were previously not possible with other aircraft, or were time- or work-intensive to accomplish on the ground. Today, helicopter uses include transportation, construction, firefighting, search and rescue, and military uses.
In 1906, two French brothers, Jacques and Louis Breguet, began experimenting with airfoils for helicopters and in 1907, those experiments resulted in the Gyroplane No.1. Although there is some uncertainty about the dates, sometime between 14 August and 29 September 1907, the Gyroplane No. 1 lifted its pilot up into the air about two feet (0.6 m) for a minute.[5] However, the Gyroplane No. 1 proved to be extremely unsteady and required a man at each corner of the airframe to hold it steady. For this reason, the flights of the Gyroplane No. 1 are considered to be the first manned flight of a helicopter, but not a free or untethered flight.
That same year, fellow French inventor Paul Cornu designed and built a Cornu helicopter that used two 20-foot (6 m) counter-rotating rotors driven by a 24-hp (18-kW) Antoinette engine. On 13 November 1907, it lifted its inventor to 1 foot (0.3 m) and remained aloft for 20 seconds. Even though this flight did not surpass the flight of the Gyroplane No. 1, it was reported to be the first truly free flight with a pilot.[n 1] Cornu's helicopter would complete a few more flights and achieve a height of nearly 6.5 feet (2 m), but it proved to be unstable and was abandoned.[5]
The Danish inventor Jacob Ellehammer built the Ellehammer helicopter in 1912. It consisted of a frame equipped with two contra-rotating discs, each of which was fitted with six vanes around its circumference. After a number of indoor tests, the aircraft was demonstrated outdoors and made a number of free take-offs. Experiments with the helicopter continued until September 1916, when it tipped over during take-off, destroying its rotors.[18]
First flights
In 1906, two French brothers, Jacques and Louis Breguet, began experimenting with airfoils for helicopters and in 1907, those experiments resulted in the Gyroplane No.1. Although there is some uncertainty about the dates, sometime between 14 August and 29 September 1907, the Gyroplane No. 1 lifted its pilot up into the air about two feet (0.6 m) for a minute.[5] However, the Gyroplane No. 1 proved to be extremely unsteady and required a man at each corner of the airframe to hold it steady. For this reason, the flights of the Gyroplane No. 1 are considered to be the first manned flight of a helicopter, but not a free or untethered flight.
That same year, fellow French inventor Paul Cornu designed and built a Cornu helicopter that used two 20-foot (6 m) counter-rotating rotors driven by a 24-hp (18-kW) Antoinette engine. On 13 November 1907, it lifted its inventor to 1 foot (0.3 m) and remained aloft for 20 seconds. Even though this flight did not surpass the flight of the Gyroplane No. 1, it was reported to be the first truly free flight with a pilot.[n 1] Cornu's helicopter would complete a few more flights and achieve a height of nearly 6.5 feet (2 m), but it proved to be unstable and was abandoned.[5]
The Danish inventor Jacob Ellehammer built the Ellehammer helicopter in 1912. It consisted of a frame equipped with two contra-rotating discs, each of which was fitted with six vanes around its circumference. After a number of indoor tests, the aircraft was demonstrated outdoors and made a number of free take-offs. Experiments with the helicopter continued until September 1916, when it tipped over during take-off, destroying its rotors.[18]
Early development
In the early 1920s, Argentine Raúl Pateras Pescara, while working in Europe, demonstrated one of the first successful applications of cyclic pitch.[5]
Coaxial, contra-rotating, biplane rotors could be warped to cyclically
increase and decrease the lift they produced. The rotor hub could also
be tilted forward a few degrees, allowing the aircraft to move forward
without a separate propeller to push or pull it. Pescara was also able
to demonstrate the principle of autorotation,
by which helicopters safely land after engine failure. By January 1924,
Pescara's helicopter No. 3 could fly for up to ten minutes.[19]
One of Pescara's contemporaries, Frenchman Etienne Oehmichen, set the first helicopter world record recognized by the Fédération Aéronautique Internationale
(FAI) on 14 April 1924, flying his helicopter 360 meters (1,181 ft). On
18 April 1924, Pescara beat Oemichen's record, flying for a distance of
736 meters (nearly a half mile) in 4 minutes and 11 seconds (about
8 mph, 13 km/h) maintaining a height of six feet (2 m).[20]
Not to be outdone, Oehmichen reclaimed the world record on 4 May when
he flew his No. 2 machine again for a 14-minute flight covering 5,550
feet (1.05 mi, 1.69 km) while climbing to a height of 50 feet (15 m).[20] Oehmichen also set the 1 km closed-circuit record at 7 minutes 40 seconds.[5]
In the USA, George de Bothezat built the quadrotor De Bothezat helicopter for the United States Army Air Service but the Army cancelled the program in 1924, and the aircraft was scrapped.
Meanwhile, Juan de la Cierva was developing the first practical rotorcraft in Spain. In 1923, the aircraft that would become the basis for the modern helicopter rotor began to take shape in the form of an autogyro, Cierva's C.4.[21]
Cierva had discovered aerodynamic and structural deficiencies in his
early designs that could cause his autogyros to flip over after takeoff.
The flapping hinges that Cierva designed for the C.4 allowed the rotor
to develop lift equally on the left and right halves of the rotor disk. A
crash in 1927, led to the development of a drag hinge to relieve
further stress on the rotor from its flapping motion.[21] These two developments allowed for a stable rotor system, not only in a hover, but in forward flight.
Albert Gillis von Baumhauer, a Dutch aeronautical engineer, began
studying rotorcraft design in 1923. His first prototype "flew" ("hopped"
and hovered in reality) on 24 September 1925, with Dutch Army-Air arm
Captain Floris Albert van Heijst at the controls. The controls that
Captain van Heijst used were Von Baumhauer's inventions, the cyclic and collective.
Patents were granted to von Baumhauer for his cyclic and collective
controls by the British ministry of aviation on 31 January 1927, under
patent number 265,272.
In 1928, Hungarian aviation engineer Oszkár Asbóth
constructed a helicopter prototype that took off and landed at least
182 times, with a maximum single flight duration of 53 minutes.[22][23]
In 1930, the Italian engineer Corradino D'Ascanio
built his D'AT3, a coaxial helicopter. His relatively large machine had
two, two-bladed, counter-rotating rotors. Control was achieved by using
auxiliary wings or servo-tabs on the trailing edges of the blades,[24]
a concept that was later adopted by other helicopter designers,
including Bleeker and Kaman. Three small propellers mounted to the
airframe were used for additional pitch, roll, and yaw control. The
D'AT3 held modest FAI speed and altitude records for the time, including
altitude (18 m or 59 ft), duration (8 minutes 45 seconds) and distance
flown (1,078 m or 3,540 ft).[24]
- Sikorsky S-64 Skycrane lifting a prefab house
- Kern County (California) Fire Department Bell 205 dropping water on fire
- A British Westland WAH-64 Apache attack helicopter
- HH-65 Dolphin demonstrating hoist rescue capability
- A Sikorsky S-76C+ air ambulance being loaded by firefighters
-
External links
- Organizations
- AHS International - The Vertical Flight Technical Society
- Helicopter Association International
- Helicopter Links - companies, organizations, museums, trade/air shows
- Articles
- "Planes That Go Straight Up." 1935 article about early development and research into helicopters
- "Flights — of the Imagination." 1918 article on helicopter design concepts.
- "Twin Windmill Blades Fly Wingless Ship" Popular Mechanics, April 1936
- "Engine-off Landings -First Thorough Examination of an Aspect of Helicopter Flight Hitherto Somewhat Neglected" 1947 article on physics of unpowered landing
- The Helicopter 1953 video about uses and flight physics of helicopters. Prelinger Archives at the Internet Archive.
- Information
Diposting oleh Astrophysics Boy di 14:55:00 0 komentar
Saturday, 7 May 2011
Memahami Relativitas Umum Einstein
Relativitas umum (bahasa Inggris: general relativity) adalah sebuah teori geometri mengenai gravitasi yang diperkenalkan oleh Albert Einstein pada 1916.
Teori ini merupakan penjelasan gravitasi termutakhir dalam fisika modern. Ia menyatukan teori Einstein sebelumnya, relativitas khusus, dengan hukum gravitasi Newton.
Hal ini dilakukan dengan melihat gravitasi bukan sebagai gaya, tetapi lebih sebagai manifestasi dari kelengkungan ruang dan waktu.
Utamanya, kelengkungan ruang waktu berhubungan langsung dengan momentum empat (energi massa dan momentum linear) dari materi atau radiasi apa saja yang ada.
Hubungan ini digambarkan oleh persamaan medan Einstein.
"Reality is merely an illusion, albeit a very persistent one."
*Albert Einstein*
Referensi
- Auyang, Sunny Y. (1995), How is Quantum Field Theory Possible?, Oxford University Press, ISBN 0-19-509345-3
- Bania, T. M.; Rood, R. T.; Balser, D. S. (2002), "The cosmological density of baryons from observations of 3He+ in the Milky Way", Nature 415: 54–57, doi:10.1038/415054a
- Barack, Leor; Cutler, Curt (2004), "LISA Capture Sources: Approximate Waveforms, Signal-to-Noise Ratios, and Parameter Estimation Accuracy", Phys. Rev. D69: 082005, doi:10.1103/PhysRevD.69.082005, arΧiv:gr-qc/031012
- Bardeen, J. M.; Carter, B.; Hawking, S. W. (1973), "The Four Laws of Black Hole Mechanics", Comm. Math. Phys. 31: 161–170, doi:10.1007/BF01645742, http://projecteuclid.org/euclid.cmp/1103858973
- Barish, Barry (2005), "Towards detection of gravitational waves", in Florides, P.; Nolan, B.; Ottewil, A., General Relativity and Gravitation. Proceedings of the 17th International Conference, World Scientific, pp. 24–34, ISBN 981-256-424-1
- Barstow, M.; Bond, Howard E.; Holberg, J.B. (2005), "Hubble Space Telescope Spectroscopy of the Balmer lines in Sirius B", Mon. Not. Roy. Astron. Soc. 362: 1134–1142, doi:10.1111/j.1365-2966.2005.09359.x, arΧiv:astro-ph/0506600
- Bartusiak, Marcia (2000), Einstein's Unfinished Symphony: Listening to the Sounds of Space-Time, Berkley, ISBN 978-0-425-18620-6
- Begelman, Mitchell C.; Blandford, Roger D.; Rees, Martin J. (1984), "Theory of extragalactic radio sources", Rev. Mod. Phys. 56: 255–351, doi:10.1103/RevModPhys.56.255
- Beig, Robert; Chruściel, Piotr T. (2006), "Stationary black holes", in Francoise, J.-P.; Naber, G.; Tsou, T.S., Encyclopedia of Mathematical Physics, Volume 2, Elsevier, arΧiv:gr-qc/0502041, ISBN 0-12-512660-3
- Bekenstein, Jacob D. (1973), "Black Holes and Entropy", Phys. Rev. D7: 2333–2346, doi:10.1103/PhysRevD.7.2333
- Bekenstein, Jacob D. (1974), "Generalized Second Law of Thermodynamics in Black-Hole Physics", Phys. Rev. D9: 3292–3300, doi:10.1103/PhysRevD.9.3292
- Belinskii, V. A.; Khalatnikov, I. M.; Lifschitz, E. M. (1971), "Oscillatory approach to the singular point in relativistic cosmology", Advances in Physics 19: 525–573, doi:10.1080/00018737000101171; original paper in Russian: Belinsky, V. A.; Khalatnikov, I. M.; Lifshitz, E. M. (1970), "Колебательный Режим Приближения К Особой Точке В Релятивистской Космологии", Uspekhi Fizicheskikh Nauk (Успехи Физических Наук) 102(3) (11): 463–500
- Bennett, C. L.; Halpern, M.; Hinshaw, G.; Jarosik, N. (2003), "First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results", Astrophys. J. Suppl. 148: 1–27, doi:10.1086/377253, arΧiv:astro-ph/0302207
- Berger, Beverly K. (2002), "Numerical Approaches to Spacetime Singularities", Living Rev. Relativity' 5, http://www.livingreviews.org/lrr-2002-1, retrieved 2007-08-04
- Bergström, Lars; Goobar, Ariel (2003), Cosmology and Particle Astrophysics (2nd ed.), Wiley & Sons, ISBN 3-540-43128-4
- Bertotti, Bruno; Ciufolini, Ignazio; Bender, Peter L. (1987), "New test of general relativity: Measurement of de Sitter geodetic precession rate for lunar perigee", Physical Review Letters 58: 1062–1065, doi:10.1103/PhysRevLett.58.1062
- Bertotti, Bruno; Iess, L.; Tortora, P. (2003), "A test of general relativity using radio links with the Cassini spacecraft", Nature 425: 374–376, doi:10.1038/nature01997
- Bertschinger, Edmund (1998), "Simulations of structure formation in the universe", Annu. Rev. Astron. Astrophys. 36: 599–654, doi:10.1146/annurev.astro.36.1.599
- Birrell, N. D.; Davies, P. C. (1984), Quantum Fields in Curved Space, Cambridge University Press, ISBN 0-521-27858-9
- Blair, David; McNamara, Geoff (1997), Ripples on a Cosmic Sea. The Search for Gravitational Waves, Perseus, ISBN 0-7382-0137-5
- Blanchet, L.; Faye, G.; Iyer, B. R.; Sinha, S. (2008), The third post-Newtonian gravitational wave polarisations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits, arΧiv:0802.1249
- Blanchet, Luc (2006), "Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries", Living Rev. Relativity 9, http://www.livingreviews.org/lrr-2006-4, retrieved 2007-08-07
- Blandford, R. D. (1987), "Astrophysical Black Holes", in Hawking, Stephen W.; Israel, Werner, 300 Years of Gravitation, Cambridge University Press, pp. 277–329, ISBN 0-521-37976-8
- Börner, Gerhard (1993), The Early Universe. Facts and Fiction, Springer, ISBN 0-387-56729-1
- Brandenberger, Robert H. (2007), Conceptual Problems of Inflationary Cosmology and a New Approach to Cosmological Structure Formation, arΧiv:hep-th/0701111
- Brans, C. H.; Dicke, R. H. (1961), "Mach's Principle and a Relativistic Theory of Gravitation", Physical Review 124 (3): 925–935, doi:10.1103/PhysRev.124.925
- Bridle, Sarah L.; Lahav, Ofer; Ostriker, Jeremiah P.; Steinhardt, Paul J. (2003), "Precision Cosmology? Not Just Yet", Science 299: 1532–1533, doi:10.1126/science.1082158, arΧiv:astro-ph/0303180, PMID 12624255
- Bruhat, Yvonne (1962), "The Cauchy Problem", in Witten, Louis, Gravitation: An Introduction to Current Research, Wiley, pp. 130, ISBN 9781114291669
- Buchert, Thomas (2007), "Dark Energy from Structure—A Status Report", General Relativity and Gravitation 40: 467–527, doi:10.1007/s10714-007-0554-8, arΧiv:0707.2153
- Buras, R.; Rampp, M.; Janka, H.-Th.; Kifonidis, K. (2003), "Improved Models of Stellar Core Collapse and Still no Explosions: What is Missing?", Phys. Rev. Lett. 90: 241101, doi:10.1103/PhysRevLett.90.241101, arΧiv:astro-ph/0303171
General Relativity
Sumber:
The University of Cambridge
Wikipedia
To Be Continued
Diposting oleh Astrophysics Boy di 06:26:00 0 komentar
Wednesday, 4 May 2011
Mekanika Orbit: Teknik-Teknik Praktis
"Teknik-Teknik Penerbangan Ke Luar Angkasa Mesti Segera Kita Pelajari Bersama"
*Arip Nurahman*
- Further information: List of orbits
Transfer Orbits
Transfer orbits allow spacecraft to move from one orbit to another. Usually they require a burn at the start, a burn at the end, and sometimes one or more burns in the middle. The Hohmann transfer orbit typically requires the least delta-v, but any orbit that intersects both the origin orbit and destination orbit may be used.
Transfer orbits allow spacecraft to move from one orbit to another. Usually they require a burn at the start, a burn at the end, and sometimes one or more burns in the middle. The Hohmann transfer orbit typically requires the least delta-v, but any orbit that intersects both the origin orbit and destination orbit may be used.
Gravity assist and the Oberth effect
In a gravity assist, a spacecraft swings by a planet and leaves
in a different direction, at a different velocity. This is useful to
speed or slow a spacecraft instead of carrying more fuel.
This
maneuver can be approximated by an elastic collision at large distances, though the flyby
does not involve any physical contact. Due to Newton's Third Law (equal
and opposite reaction), any momentum gained by a spacecraft must be lost
by the planet, or vice versa. However, because the planet is much, much
more massive than the spacecraft, the effect on the planet's orbit is
negligible.
The Oberth
effect can be employed, particularly during a gravity assist
operation. This effect is that use of a propulsion system works better
at high speeds, and hence course changes are best done when close to a
gravitating body; this can multiply the effective delta-v.
Interplanetary Transport Network and Fuzzy Orbits
Interplanetary Transport Network and Fuzzy Orbits
- Main article: Interplanetary Transport Network
- See also: Low energy transfers
It
is now possible to use computers to search for routes using the
nonlinearities in the gravity of the planets and moons of the solar
system. For example, it is possible to plot an orbit from high earth
orbit to Mars, passing close to one of the Earth's Trojan points.
Collectively referred to as the Interplanetary Transport Network, these highly perturbative, even chaotic, orbital trajectories in principle need no fuel (in practice keeping to the trajectory requires some course corrections). The biggest problem with them is they are usually exceedingly slow, taking many years to arrive. In addition launch windows can be very far apart.
Collectively referred to as the Interplanetary Transport Network, these highly perturbative, even chaotic, orbital trajectories in principle need no fuel (in practice keeping to the trajectory requires some course corrections). The biggest problem with them is they are usually exceedingly slow, taking many years to arrive. In addition launch windows can be very far apart.
They
have, however, been employed on projects such as Genesis. This spacecraft visited
Earth's lagrange L1 point and returned using very little propellant.
Sumber:
Wikipedia
Sumber:
Wikipedia
Diposting oleh Astrophysics Boy di 10:04:00 0 komentar
Label: Guru dan Dosen Profesional, Indonesian Space Sciences Technology School
Monday, 2 May 2011
Mari Kita Mengoptimalkan E-Journal Badan Tenaga Nuklir Nasional
Jurnal Iptek Nuklir Ganendra
Jurnal Iptek Nuklir Ganendra merupakan jurnal
ilmiah hasil litbang dalam bidang iptek nuklir, diterbitkan oleh Pusat
Teknologi Akselerator dan Proses Bahan (PTAPB) - BATAN Yogyakarta.
Frekuensi terbit dua kali setahun setiap bulan Januari dan Juli.
Lihat Jurnal | Terbitan Terkini | DaftarBuletin Alara
Buletin Alara terbit pertama kali pada Bulan
Agustus 1997 dengan frekuensi terbit tiga kali dalam setahun (Agustus,
Desember dan April) ini diharapkan dapat menjadi salah satu sarana
informasi, komunikasi dan diskusi di antara para peneliti dan pemerhati
masalah keselamatan radiasi dan lingkungan di Indonesia.
Lihat Jurnal | Terbitan Terkini | DaftarJurnal Teknologi Pengelolaan Limbah
Jurnal Teknologi Pengelolaan Limbah,
diterbitkan oleh Pusat Teknologi Limbah Radioaktif - BATAN. Frekuensi
terbit enam bulanan, pertama terbit Juni 1998. Alamat: Kawasan Puspiptek
Serpong, Tangerang 15310, Indonesia.
Redaksi jurnal menerima
naskah/makalah karya tulis ilmiah dari kegiatan penelitian dan
pengembangan meliputi aspek aspek pengolahan dan penyimpanan limbah.
Lihat Jurnal | Terbitan Terkini | DaftarJurnal Sains Materi Indonesia
Jurnal Sains Materi Indonesia (Indonesian Journal of Materials Science),
diterbitkan oleh Pusat Teknologi Bahan Industri Nuklir - BATAN. Terbit
pertama kali: Oktober 1999, frekuensi terbit: empat bulanan.
Alamat Redaksi : PTBIN - BATAN, Gedung 43, Kawasan Puspiptek Serpong 15314 TangerangLihat Jurnal | Terbitan Terkini | Daftar
Jurnal Perangkat Nuklir
Jurnal Perangkat Nuklir (Journal of Nuclear Equepments),
terbit dua kali setiap tahun bulan Mei dan November sejak 2007.
Partisipasi aktif berupa saran dan pendapat maupun kritik yang bersifat
membangun sangat diharapkan untuk meningkatkan kualitas jurnal. Alamat:
Gedung 71, Kawasan Puspiptek Serpong, Tangerang 15310, Indonesia,
Telepon: (021) 7560896, Penerbit: Pusat Rekayasa Perangkat Nuklir -
BATAN
Lihat Jurnal | Terbitan Terkini | DaftarBila kita mampu membangun himpunan-himpunan peneliti kecil di tiap sekolah tinggi/kampus di Indonesia mengenai Iptek Nuklir ini, kemungkinan besar percepatan perkembangan ilmu pengetahuan Nuklir di tanah air akan semakin dahsyat dan masyarakat kita di kemudian hari dapat memetik manfaatnya.
Amin.
Sumber: Badan Tenaga Nuklir Nasional
Kunjungi juga:
http://www.batan.go.id/ (BATAN)
http://www.iaea.org/ (International Atomic Energy Agency)
http://nuclearscienceandtechnology.blogspot.com/ (Sekolah Sains dan Teknologi Nuklir)
http://masyarakatipteksindonesia.blogspot.com/2010/02/nuklir-indonesia_8979.html (Masyarakat Nuklir Indonesia)
http://www.sttn-batan.ac.id/ (Sekolah Tinggi Teknologi Nuklir BATAN)
http://ocw.mit.edu/courses/nuclear-engineering/ (Nuclear Engineering OpenCourseWare from MIT)
http://fisika.upi.edu/ (Jurusan Pendidikan Fisika, FPMIPA Universitas Pendidikan Indonesia)
Ucapan Terima Kasih Kepada:
Kak Rezy Pradipta, Ph.D. (Alumni Tim Olimpiade Fisika Indonesia, Belajar di Department of Nuclear Engineering at MIT)
Dr. Mohamed Mustafa ElBaradei, J.S.D. (Former Director General of IAEA)
Prof. Mujid S. Kazimi, Ph.D. (Director, Center for Advanced Nuclear Energy Systems MIT)
Prof.Djarot Sulistio Wisnubroto, M.Sc., D.Sc. (Presiden BATAN)
Kak Iqbal Robiyana, S.Pd. (Founder Center for Nuclear Education at Indonesia University of Education)
Dr. Petros Aslanyan, M.Sc. (Joint Institute for Nuclear Research, Rusia & Yerevan State University)
Semangat Semoga Bermanfaat
Diposting oleh Astrophysics Boy di 08:06:00 0 komentar
Label: Nuclear untuk Perdamaian
Sunday, 1 May 2011
On the Moon Educator Guide
Audience: Educators
Grades: 3-12 and Informal
Product Number: EG-2009-02-05-MSFC
Grades: 3-12 and Informal
Product Number: EG-2009-02-05-MSFC
NASA is one of the largest employers of engineers in the world. "Design Squad®," an award-winning TV show that airs on PBS, engages teams of students in imaginative engineering challenges. Together, NASA and "Design Squad" have developed the On the Moon Educator Guide. The guide brings hands-on engineering and the adventure of space exploration to life for students. The activities are related to NASA's Lunar Reconnaissance Orbiter and NASA's Lunar Crater Observation and Sensing Satellite missions. In this guide, students are challenged to design and build:
- An air-powered rocket.
- A shock-absorbing system that will protect two marshmallow "astronauts."
- A rubber band-powered rover.
- A cardboard crane for maximum load-lifting ability.
- A paper cup modified so that it can carry a marble down a zip line and drop a marble onto a target.
- A solar hot water heater to cause the greatest rise in temperature.
On the Moon Educator Guide [8MB PDF file]
Individual sections:
Introductory Pages
Launch It
Touchdown
Roving on the Moon
Heavy Lifting
On Target
Feel the Heat
Additional Resources
Online Training for Teaching Hands-On Engineering Activities with NASA and "DESIGN SQUAD®"
NASA and "DESIGN SQUAD®" have developed an online workshop for educators and afterschool leaders to build their skills and confidence in guiding kids through engineering activities like those from the On The Moon Educator Guide.
Completing this self-guided online workshop will allow educators to gain insight and strategies for strengthening critical-thinking skills and exciting their students about using the design process to arrive at solutions.
> View site →
Individual sections:
Introductory Pages
Launch It
Touchdown
Roving on the Moon
Heavy Lifting
On Target
Feel the Heat
Additional Resources
Online Training for Teaching Hands-On Engineering Activities with NASA and "DESIGN SQUAD®"
NASA and "DESIGN SQUAD®" have developed an online workshop for educators and afterschool leaders to build their skills and confidence in guiding kids through engineering activities like those from the On The Moon Educator Guide.
Completing this self-guided online workshop will allow educators to gain insight and strategies for strengthening critical-thinking skills and exciting their students about using the design process to arrive at solutions.
> View site →
Diposting oleh Astrophysics Boy di 11:58:00 0 komentar
Subscribe to:
Posts (Atom)