Sin-Itiro Tomonaga (朝永 振一郎) | |
---|---|
Born | March 31, 1906 Tokyo, Japan |
Died | July 8, 1979 (aged 73) Tokyo, Japan |
Fields | Theoretical physics |
Institutions | Institute for Advanced Study Tokyo University of Education/ University of Tsukuba |
Alma mater | Kyoto Imperial University |
Known for | Quantum electrodynamics |
Notable awards | Nobel Prize in Physics (1965) Asahi Prize (1946) |
Sin-Itiro Tomonaga, peraih Nobel fisika tahun 1965
tampaknya memang sudah ditakdirkan untuk menjadi seorang tokoh
ilmuwan terpandang. Ia memperoleh bakat ilmiahnya dari sang ayah
Sanjuro Tomonaga yang merupakan profesor filsafat terkenal di
Kyoto Imperial University. Pria kelahiran Tokyo, Jepang pada 31
Maret 1906 sebagai anak tertua ini memperoleh pendidikan
berkualitas sejak masa kanak-kanak.
Ia pun lulus dari the Third Higher School, Kyoto, sebuah sekolah terkenal yang telah melahirkan banyak tokoh ilmuwan maupun pemimpin bangsa di Jepang. Meskipun demikian tentu saja ketokohannya itu tidak ia peroleh secara cuma-cuma dari langit. Tomonaga oleh para koleganya dikenal sebagai pribadi yang selain berbakat di bidangnya, juga penuh dedikasi dan pekerja keras yang pantang menyerah.
Ia pun lulus dari the Third Higher School, Kyoto, sebuah sekolah terkenal yang telah melahirkan banyak tokoh ilmuwan maupun pemimpin bangsa di Jepang. Meskipun demikian tentu saja ketokohannya itu tidak ia peroleh secara cuma-cuma dari langit. Tomonaga oleh para koleganya dikenal sebagai pribadi yang selain berbakat di bidangnya, juga penuh dedikasi dan pekerja keras yang pantang menyerah.
Tomonaga menyelesaikan Rigakushi (sebutan untuk gelar sarjana Jepang)
dalam bidang fisika di Kyoto Imperial University pada 1929. Setelah itu ia terlibat
dalam proyek riset selama 3 tahun di universitas yang sama dan kemudian ditunjuk
sebagai asisten riset oleh Dr. Yoshio Nishina, seorang fisikawan terkenal di institut
riset fisika dan kimia, Tokyo. Di sana ia memulai penelitiannya mengembangkan teori
fisika kuantum elektrodinamika di bawah bimbingan Dr. Nishina.
Hasil riset yang
kemudian dipublikasikannya dengan judul photoelectric pair creation tercatat sebagai
sebuah karya penting dan terkenal pada masa itu.
Pada 1937, Tomonaga meninggalkan Jepang menuju Leipzig, Jerman untuk
mempelajari fisika nuklir dan teori medan kuantum. Ia bekerja sama dengan tim
teoritis Dr. W. Heisenberg (fisikawan terkenal, penemu teori Kuantum) dalam riset
itu. Hasilnya kelak ia tuangkan dalam tesisnya untuk mendapatkan gelar
Rigakuhakushi (setara dengan Doktor) dari Universitas Tokyo, Desember 1939.
Setahun berselang Tomonaga memusatkan perhatian pada teori meson dan
mengembangkan teori tentang struktur awan meson di sekitar nukleon. Ia bergabung
dengan Universitas Bunrika (yang kemudian beralih menjadi universitas pendidikan
Tokyo) sebagai profesor fisika pada 1941. Tahun 1942 ia pertama kali mengajukan
formulasi kovarian relativistik dari pengembangan teori medan kuantum.
Ketika negerinya terlibat perang, Tomonaga tidak menghentikan risetnya
sekalipun dalam keadaan terisolasi. Ia pantang menyerah pada situasi apapun juga.
Saat itu di tengah berbagai keterbatasan ia tetap mampu mempublikasikan kertas kerja
penting di bidang kuantum elektrodinamika.
Ia berhasil memecahkan persoalan gerak
elektron dalam magnetron dan juga mengembangkan teori terpadu tentang sistem
yang terdiri dari resonator pandu gelombang (wave guides resonators) dan resonator
rongga (cavity resonators).
Setelah perang usai, pada 1949, ia diundang bergabung dengan The Institute
for Advanced Study, Princeton, gudangnya para fisikawan dunia.
Di sana ia menjadi
orang pertama yang menjelaskan osilasi kolektif dari suatu sistem kompleks mekanika
kuantum. Hasil risetnya ini menjadi pembuka bagi berkembangnya bidang baru dalam
fisika kuantum: modern many-body problem. Tahun 1955, ia pun mempublikasikan
teori dasar mekanika kuantum untuk gerak kolektif.
Berkat risetnya yang
berkesinambungan sehingga mampu menghasilkan kontribusi penting di bidang
kuantum elektrodinamika yang disadari sangat mempengaruhi perkembangan fisika
partikel elementer, Tomonaga dianugerahi Nobel Fisika 1965 bersama dengan Julian
Schwinger dan Richard Feynman.
Selain Nobel, Tomonaga banyak memperoleh penghargaan bergengsi lainnya
seperti: The Japan Academy Prize (1948); dan The Lomonosov Medal, U.S.S.R.
(1964).
Perhargaan-penghargaan ini diperolehnya berkat berbagai karyanya dalam
bidang kuantum elektrodinamika, teori meson, fisika nuklir, sinar kosmis dan banyak
topik lainnya yang dipublikasikan dalam berbagai jurnal ilmiah.. Bukunya “Mekanika
kuantum” yang dipublikasikan tahun 1949 sangat terkenal dan diterjemahkan dalam
bahasa inggris tahun 1963.
Walaupun sangat sibuk, Tomonaga tidak lupa memperhatikan perkembangan
pendidikan dan riset untuk orang-orang Jepang. Tahun 1956 sampai 1962 ia
mengembangkan Universitas Pendidikan Tokyo, ia juga mendirikan Institute for
Nuclear Study, di Universitas Tokyo, tahun 1955 dan memimpin The Science Council,
Jepang serta menjadi direktur The Institute for Optical Research, Universitas
Pendidikan Tokyo.
Dia juga memegang posisi-posisi penting di berbagai departemen
untuk komisi di bidang sains dan riset dan sebagai pembuat kebijakan.
Tahun 1979 Tomonaga meninggalkan seorang istri, dua anak laki-laki dan
satu anak perempuan. Anak perempuannya menikah dengan seorang profesor fisika
dari Rochester University, Amerika Serikat.
Research works:
Prof. Dr. Tomonaga contributed to a broad range of theoretical physics, but his main works can be classified into the following four:
1) The super-many-time theory and renormalization theory Quantum field theory, which explains the behavior of elementary particles, had a flaw that the relation of this theory with the theory of relativity was not entireily clear. Dr. Tomonaga overcame this difficulty by introducing the super-many-time theory based on the idea that each point of space has its own specific time.
Furthermore, the field theory of the electron and electro-magnetic fields, quantum electrodynamics, had an inherent contradiction that all calculated physical quantities became infinite. However, the super-many-time theory showed that each infinite term could be regarded as a correction to the mass and charge of electrons. By renormalizing these infinities into the mass and charge of the electron, all physical quantities become finite, and thus the theory can explain experiments well. This is the renormalization theory of Dr. Tomonaga.
2) The theory of collective motions: Macroscopic matter contains approximately 10^22 atoms (??) per 1 cm^3, and these atoms exhibit not only random but also organized motion as a whole. These are called collective motions of many-body systems (e.g., acoustic waves in matter). Dr. Tomonaga established a general method for dealing with many-body systems which can separate collective motions from random motions of atoms. This method is currently applied in many areas of theoretical physics.
3) The mesonic theory: According to the meson theory of Dr. H. Yukawa, nucleons (protons and neutrons) in the atomic nuclei interact with a strong force called the nuclear force via mesons. Dr. Tomonaga clarified the physical meaning of the meson theory by analyzing the mathematical structures of the theory, such as problems concerning the "field reaction" which mesons give to nucleons, and the method of intermediate coupling for less strong mutual interactions.
4) Magnetron and stereo-circuits: The theoretical work on the oscillation mechanism of the magnetron is very famous as an applied physics work done during the war. In particular, the theory of microwave stereo-circuits, which was constructed by analogy with an atomic nucleus reaction theory, put vitality into this then-stagnant field of electronics.
Heisenberg and Pauli regarded the (electromagnetic) field itself as a dynamical system amenable to the Hamiltonian treatment; its interaction with particles could be described by an interaction energy, so that the usual method of Hamiltonian quantum mechanics could be applied. On the other hand, Dirac thought that the field and the particles should play essentially different roles. That is to say, according to him, "the role of the field is to provide a means for making observations of a system of particles" and therefore "we cannot suppose the field to be a dynamical system on the same footing as the particles and thus be something to be observed in the same way as the particles".More Nobel Lecture
Research works:
Prof. Dr. Tomonaga contributed to a broad range of theoretical physics, but his main works can be classified into the following four:
1) The super-many-time theory and renormalization theory Quantum field theory, which explains the behavior of elementary particles, had a flaw that the relation of this theory with the theory of relativity was not entireily clear. Dr. Tomonaga overcame this difficulty by introducing the super-many-time theory based on the idea that each point of space has its own specific time.
Furthermore, the field theory of the electron and electro-magnetic fields, quantum electrodynamics, had an inherent contradiction that all calculated physical quantities became infinite. However, the super-many-time theory showed that each infinite term could be regarded as a correction to the mass and charge of electrons. By renormalizing these infinities into the mass and charge of the electron, all physical quantities become finite, and thus the theory can explain experiments well. This is the renormalization theory of Dr. Tomonaga.
2) The theory of collective motions: Macroscopic matter contains approximately 10^22 atoms (??) per 1 cm^3, and these atoms exhibit not only random but also organized motion as a whole. These are called collective motions of many-body systems (e.g., acoustic waves in matter). Dr. Tomonaga established a general method for dealing with many-body systems which can separate collective motions from random motions of atoms. This method is currently applied in many areas of theoretical physics.
3) The mesonic theory: According to the meson theory of Dr. H. Yukawa, nucleons (protons and neutrons) in the atomic nuclei interact with a strong force called the nuclear force via mesons. Dr. Tomonaga clarified the physical meaning of the meson theory by analyzing the mathematical structures of the theory, such as problems concerning the "field reaction" which mesons give to nucleons, and the method of intermediate coupling for less strong mutual interactions.
4) Magnetron and stereo-circuits: The theoretical work on the oscillation mechanism of the magnetron is very famous as an applied physics work done during the war. In particular, the theory of microwave stereo-circuits, which was constructed by analogy with an atomic nucleus reaction theory, put vitality into this then-stagnant field of electronics.
Nobel Lecture:
Nobel Lecture, May 6, 1966
Development of Quantum Electrodynamics
Personal recollections
(1) In 1932, when I started my research career as an assistant to Nishina, Dirac published a paper in the Proceedings of the Royal Society, London1. In this paper, he discussed the formulation of relativistic quantum mechanics, especially that of electrons interacting with the electromagnetic field. At that time a comprehensive theory of this interaction had been formally completed by Heisenberg and Pauli2, but Dirac was not satisfied with this theory and tried to construct a new theory from a different point of view.
Heisenberg and Pauli regarded the (electromagnetic) field itself as a dynamical system amenable to the Hamiltonian treatment; its interaction with particles could be described by an interaction energy, so that the usual method of Hamiltonian quantum mechanics could be applied. On the other hand, Dirac thought that the field and the particles should play essentially different roles. That is to say, according to him, "the role of the field is to provide a means for making observations of a system of particles" and therefore "we cannot suppose the field to be a dynamical system on the same footing as the particles and thus be something to be observed in the same way as the particles".More Nobel Lecture
President of University of Tsukuba, Prof. Yamada making the speech at Graduation ceremony
Lihat Juga Research institutes in Tsukuba:
- Geographical Survey Institute
- Japan Aerospace Exploration Agency (JAXA)
- KEK (High Energy Accelerator Research Organization)
- National Food and Research Institute (NFRI)
- National Institute of Advanced Industrial Science and Technology (AIST)
- National Institute for Environmental Studies
- National Institute for Materials Science (NIMS)
- National Institute for Rural Engineering
- Tsukuba Botanical Garden
- University of Tsukuba
Sumber:
1. Prof. Yohanes Surya, Ph.D.
2. http://www.nobelprize.org/nobel_prizes/physics/laureates/1965/tomonaga-bio.html
3. http://www.tsukuba.ac.jp/english/about/nobel/tomonaga.html
4. http://www.city.tsukuba.ibaraki.jp