Pengalaman Belajar Fisika di SMAN BI 1 Banjar
Fluids Pressure and Depth
SUBJECT: Aeronautics
TOPIC: Hydrostatic Pressure
DESCRIPTION: A set of mathematics problems dealing with hydrostatics.
CONTRIBUTED BY: Carol Hodanbosi
EDITED BY: Jonathan G. Fairman - August 1996
A fluid is a substance that flows easily. Gases and liquids are fluids, although sometimes the dividing line between liquids and solids is not always clear. Because of their ability to flow, fluids can exert buoyant forces, multiply forces in a hydraulic systems, allow aircraft to fly and ships to float.
The topic that this page will explore will be pressure and depth. If a fluid is within a container then the depth of an object placed in that fluid can be measured. The deeper the object is placed in the fluid, the more pressure it experiences. This is because is the weight of the fluid above it. The more dense the fluid above it, the more pressure is exerted on the object that is submerged, due to the weight of the fluid.
The formula that gives the P pressure on an object submerged in a fluid is:
where
- r (rho) is the density of the fluid,
- g is the acceleration of gravity
- h is the height of the fluid above the object
If the container is open to the atmosphere above, the added pressure must be included if one is to find the total pressure on an object. The total pressure is the same as absolute pressure on pressure gauges readings, while the gauge pressure is the same as the fluid pressure alone, not including atmospheric pressure.
A Pascal is the unit of pressure in the metric system. It represents 1 newton/m2
Example:
Find the pressure on a scuba diver when she is 12 meters below the surface of the ocean. Assume standard atmospheric conditions.
Find the pressure on a scuba diver when she is 12 meters below the surface of the ocean. Assume standard atmospheric conditions.
Solution:
The density of sea water is 1.03 X 10 3 kg/m3 and the atmospheric pressure is 1.01 x 105 N/m2.
The density of sea water is 1.03 X 10 3 kg/m3 and the atmospheric pressure is 1.01 x 105 N/m2.
Pfluid = r g h = (1.03 x10 3 kg/m3) (9.8 m/s2) (12 m) = 1.21 x 105 Newtons/m2 Ptotal = Patmosphere + Pfluid = (1.01 x 105) + (1.21 x 105 ) Pa = 2.22 x 10 2 kPa (kilo Pascals)
Exercises :
(answer)
(answer)
(answer)
(answer)
(answer)
Sumber:
NASA
No comments:
Post a Comment