Tuesday, 27 July 2010

Hyperspace

Disusun Ulang Oleh:


Arip Nurahman
Department of Physics
Faculty of Sciences and Mathematics, Indonesia University of Education

and

Follower Open Course Ware at Massachusetts Institute of Technology
Cambridge, USA

Department of Physics
http://web.mit.edu/physics/
http://ocw.mit.edu/OcwWeb/Physics/index.htm


&

Aeronautics and Astronautics Engineering
http://web.mit.edu/aeroastro/www/
http://ocw.mit.edu/OcwWeb/Aeronautics-and-Astronautics/index.htm
















 


Hyperspace is a plot device sometimes used in science fiction. It is typically described as an alternative region of space co-existing with our own universe which may be entered using an energy field or other device. Travel in hyperspace is frequently depicted as faster-than-light travel in normal space.

Hyperspace is sometimes used to enable and explain faster than light (FTL) travel in science fiction stories where FTL is necessary for interstellar travel or intergalactic travel. Spacecraft able to use hyperspace for FTL travel are sometimes said to have a hyperdrive.

Detailed descriptions of the mechanisms of hyperspace travel are often provided in stories using the plot device, sometimes incorporating some actual physics such as relativity or string theory in order to create the illusion of a seemingly plausible explanation. Hyperspace travel is nevertheless a fictional technology.

Authors may develop alternative names for hyperspace in their works, such as the Immaterium (used in Warhammer 40,000), Z space in Animorphs, or "Underspace" (U-space), commonly referred to in the works of Neal Asher.

Normal space

In normal 3-D space, the "shortest path" between two events A and B is found in the following way. First, look at all paths in 4-D space-time between A and B, and find the space-time path that takes the shortest time to traverse. Because of relativity, there is no such thing as universal time: so let the time be measured with respect to a clock whose motion matches the space-time path. Call this space-time path "P". Then the shortest path in space is simply the path in space traced by the space-time path P.

In strict mathematical terms, it may be impossible to define such a path, along which matter can travel. However, it usually is possible to find an infinite sequence of paths that converge uniformly to some limit, that is, some "limiting" path. Of course, under relativity, matter may not be able to travel along this limiting path, but light can travel along this path. In fact, the path of the light beam from A to B is the theoretical limit. No ship in normal space could follow the path of light in 4-D space time, but it can get arbitrarily close (until the energy required to go any faster exceeds the energy available).

This path (or limiting path) may not be unique: there may be many "shortest paths." Also, no path may exist; for example, suppose A lies in a black hole and B lies outside the black hole—since nothing can exit a black hole, such a path would not exist. Finally, because of the general relativity, this path is not a "straight line" in the strict Euclidean sense, but is "curved." For example, if we aimed a rocket at the Moon traveling near the speed of light, the shortest path to the Moon is still a curved path. In fact, even if we aimed a photon of light at the Moon, it will follow a curved path, since gravity bends all things.

The space along which the photon travels is, in fact, curved because gravity curves space itself. Just like traveling along the surface of water; if the surface of the water is swelled in a wave, then it would still be possible to travel in a straight line through the water (traveling underneath the wave,) but it would require more effort than just traveling along the curved surface of the water. It is still possible to travel in a straight line to the Moon, yet since the curved light beam is the best, the curved path close to this beam (following the path of the curved space) is better than the straight path. 

This is because the light beam is technically actually traveling in a straight line, relative to the curved space it is traveling in, but the space itself is curved, so it appears to an outside observer that the light beam is traveling in a curved line. Of course, if we take energy expenditures into account, then the minimum energy paths are just transfer orbits and gravity boosts that Earth space agencies predominantly use although these are not 'fast'.


See also

References

Further reading


Saturday, 24 July 2010

Laser

A laser is a device that emits light (electromagnetic radiation) through a process of optical amplification based on the stimulated emission of photons. The term "laser" originated as an acronym for Light Amplification by Stimulated Emission of Radiation. The emitted laser light is notable for its high degree of spatial and temporal coherence.

Spatial coherence is typically expressed through the output being a narrow beam which is diffraction-limited, often a so-called "pencil beam." Laser beams can be focused to very tiny spots, achieving a very high irradiance, or they can be launched into beams of very low divergence in order to concentrate their power at a large distance.

Temporal (or longitudinal) coherence implies a polarized wave at a single frequency whose phase is correlated over a relatively large distance (the coherence length) along the beam. A beam produced by a thermal or other incoherent light source has an instantaneous amplitude and phase which vary randomly with respect to time and position, and thus a very short coherence length.

Most so-called "single wavelength" lasers actually produce radiation in several modes having slightly different frequencies (wavelengths), often not in a single polarization. And although temporal coherence implies monochromaticity, there are even lasers that emit a broad spectrum of light, or emit different wavelengths of light simultaneously. There are some lasers which are not single spatial mode and consequently their light beams diverge more than required by the diffraction limit. However all such devices are classified as "lasers" based on their method of producing that light: stimulated emission. Lasers are employed in applications where light of the required spatial or temporal coherence could not be produced using simpler technologies.

Thursday, 22 July 2010

Microfabrication

Microfabrication is the term that describes processes of fabrication of miniature structures, of micrometre sizes and smaller. Historically the earliest microfabrication processes were used for integrated circuit fabrication, also known as "semiconductor manufacturing" or "semiconductor device fabrication". In the last two decades microelectromechanical systems (MEMS), microsystems (European usage), micromachines (Japanese terminology) and their subfields, microfluidics/lab-on-a-chip, optical MEMS (also called MOEMS), RF MEMS, PowerMEMS, BioMEMS and their extension into nanoscale (for example NEMS, for nano electro mechanical systems) have re-used, adapted or extended microfabrication methods. Flat-panel displays and solar cells are also using similar techniques.

Miniaturization of various devices presents challenges in many areas of science and engineering: physics, chemistry, material science, computer science, ultra-precision engineering, fabrication processes, and equipment design. It is also giving rise to various kinds of interdisciplinary research. The major concepts and principles of microfabrication are microlithography, doping, thin films, etching, bonding, and polishing.

Sunday, 18 July 2010

Parallel Universe

Disusun Ulang Oleh:


Arip Nurahman
Department of Physics
Faculty of Sciences and Mathematics, Indonesia University of Education

and

Follower Open Course Ware at Massachusetts Institute of Technology
Cambridge, USA
Department of Physics
http://web.mit.edu/physics/
http://ocw.mit.edu/OcwWeb/Physics/index.htm


&


Aeronautics and Astronautics Engineering
http://web.mit.edu/aeroastro/www/
http://ocw.mit.edu/OcwWeb/Aeronautics-and-Astronautics/index.htm

















A parallel universe or alternative reality is a hypothetical self-contained separate reality coexisting with one's own. A specific group of parallel universes is called a "multiverse", although this term can also be used to describe the possible parallel universes that constitute reality. While the terms "parallel universe" and "alternative reality" are generally synonymous and can be used interchangeably in most cases, there is sometimes an additional connotation implied with the term "alternative reality" that implies that the reality is a variant of our own. The term "parallel universe" is more general, without any connotations implying a relationship, or lack of relationship, with our own universe. A universe where the very laws of nature are different – for example, one in which there are no relativistic limitations and the speed of light can be exceeded – would in general count as a parallel universe but not an alternative reality. The correct quantum mechanical definition of parallel universes is "universes that are separated from each other by a single quantum event."


Science fiction

While technically incorrect, and looked down upon by hard science-fiction fans and authors, the idea of another “dimension” has become synonymous with the term “parallel universe”. The usage is particularly common in movies, television and comic books and much less so in modern prose science fiction. The idea of a parallel world was first introduced in comic books with the publication of Flash #123 - "Flash of Two Worlds".

In written science fiction, “new dimensions” more commonly — and more accurately — refer to additional coordinate axes, beyond the three spatial axes with which we are familiar. By proposing travel along these extra axes, which are not normally perceptible, the traveler can reach worlds that are otherwise unreachable and invisible.




Edwin A. Abbott's Flatland is set in a world of two dimensions.



In 1884, Edwin A. Abbott wrote the seminal novel exploring this concept called Flatland: A Romance of Many Dimensions. It describes a world of two dimensions inhabited by living squares, triangles, and circles, called Flatland, as well as Pointland (0 dimensions), Lineland (1 dimension), and Spaceland (three dimensions) and finally posits the possibilities of even greater dimensions. Isaac Asimov, in his foreword to the Signet Classics 1984 edition, described Flatland as "The best introduction one can find into the manner of perceiving dimensions."


In 1895, The Time Machine by H. G. Wells used time as an additional “dimension” in this sense, taking the four-dimensional model of classical physics and interpreting time as a space-like dimension in which humans could travel with the right equipment. Wells also used the concept of parallel universes as a consequence of time as the fourth dimension in stories like The Wonderful Visit and Men Like Gods, an idea proposed by the astronomer Simon Newcomb, who talked about both time and parallel universes; "Add a fourth dimension to space, and there is room for an indefinite number of universes, all alongside of each other, as there is for an indefinite number of sheets of paper when we pile them upon each other".


There are many examples where authors have explicitly created additional spatial dimensions for their characters to travel in, to reach parallel universes. In Doctor Who, the Doctor accidentally enters a parallel universe while attempting to repair the TARDIS console in Inferno. The parallel universe was similar to the real universe but with some different aspects. Douglas Adams, in the last book of the Hitchhiker's Guide to the Galaxy series, Mostly Harmless, uses the idea of probability as an extra axis in addition to the classical four dimensions of space and time similar to the many-worlds interpretation of quantum physics

Though, according to the novel, they're not really parallel universes at all but only a model to capture the continuity of space, time and probability. Robert A. Heinlein, in The Number of the Beast, postulated a six-dimensional universe. In addition to the three spatial dimensions, he invoked symmetry to add two new temporal dimensions, so there would be two sets of three. Like the fourth dimension of H. G. Wells’ "Time Traveller", these extra dimensions can be traveled by persons using the right equipment.

References

 

Notes

  1. ^ Carl Sagan, Placido P D'Souza (1980s). Hindu cosmology's time-scale for the universe is in consonance with modern science.; Dick Teresi (2002). Lost Discoveries : The Ancient Roots of Modern Science - from the Babylonians to the Maya.
  2. ^ Irwin, Robert (2003). The Arabian Nights: A Companion. Tauris Parke Paperbacks. p. 209. ISBN 1860649831. 
  3. ^ Briggs (1967) p.50-1
  4. ^ Gareth Matthews, "Plato in Narnia" p 171 Gregory Bassham ed. and Jerry L. Walls, ed. The Chronicles of Narnia and Philosophy ISBN 0-8126-9588-7
  5. ^ Stephen Baxter Speech
  6. ^ a b C. S. Lewis, "On Science Fiction", Of Other Worlds, p68 ISBN 0-15-667897-7
  7. ^ "John Grant" interviewed by Lou Anders, accessed 24 October 2009
  8. ^ Michael Moorcock, Wizardry & Wild Romance: A Study of Epic Fantasy p 88 ISBN 1-932265-07-4

Further reading

  • Clifford A. Pickover (August 2005). Sex, Drugs, Einstein, and Elves: Sushi, Psychedelics, Parallel Universes, and the Quest for Transcendence (Discusses parallel universes in a variety of settings, from physics to psychedelic visions to Proust parallel worlds to Bonnet syndrome). Smart Publications. ISBN 1-890572-17-9. 
  • Michio Kaku (2004). Parallel Worlds: A Journey Through Creation, Higher Dimensions, and the Future of the Cosmos. Doubleday. ISBN 0-385-50986-3.

Thursday, 15 July 2010

Applied Mechanics

Applied mechanics is a branch of the physical sciences and the practical application of mechanics. Applied mechanics examines the response of bodies (solids and fluids) or systems of bodies to external forces. Some examples of mechanical systems include the flow of a liquid under pressure, the fracture of a solid from an applied force, or the vibration of an ear in response to sound. A practitioner of the discipline is known as a mechanician.

Applied mechanics, as its name suggests, bridges the gap between physical theory and its application to technology. As such, applied mechanics is used in many fields of engineering, especially mechanical engineering. In this context, it is commonly referred to as engineering mechanics. Much of modern engineering mechanics is based on Isaac Newton's laws of motion while the modern practice of their application can be traced back to Stephen Timoshenko, who is said to be the father of modern engineering mechanics.

Within the theoretical sciences, applied mechanics is useful in formulating new ideas and theories, discovering and interpreting phenomena, and developing experimental and computational tools. In the application of the natural sciences, mechanics was said to be complemented by thermodynamics by physical chemists Gilbert N. Lewis and Merle Randall, the study of heat and more generally energy, and electromechanics, the study of electricity and magnetism.
 
 

Saturday, 10 July 2010

Multiverse

Disusun Ulang Oleh:

Arip Nurahman
Department of Physics
Faculty of Sciences and Mathematics, Indonesia University of Education

and

Follower Open Course Ware at Massachusetts Institute of Technology
Cambridge, USA
Department of Physics
http://web.mit.edu/physics/
http://ocw.mit.edu/OcwWeb/Physics/index.htm
&


Aeronautics and Astronautics Engineering
http://web.mit.edu/aeroastro/www/
http://ocw.mit.edu/OcwWeb/Aeronautics-and-Astronautics/index.htm

















 


The multiverse (or meta-universe, metaverse) is the hypothetical set of multiple possible universes (including the historical universe we consistently experience) that together comprise everything that exists and can exist: the entirety of space, time, matter, and energy as well as the physical laws and constants that describe them. The term was coined in 1895 by the American philosopher and psychologist William James.[1] The various universes within the multiverse are sometimes called parallel universes.




The structure of the multiverse, the nature of each universe within it and the relationship between the various constituent universes, depend on the specific multiverse hypothesis considered. Multiverses have been hypothesized in cosmology, physics, astronomy, religion, philosophy, transpersonal psychology and fiction, particularly in science fiction and fantasy. In these contexts, parallel universes are also called "alternative universes", "quantum universes", "interpenetrating dimensions", "parallel dimensions", "parallel worlds", "alternative realities", "alternative timelines", and "dimensional planes," among others.



Cosmology in medieval Islam

 

 

Fakhr al-Din al-Razi (1149–1209), in dealing with his conception of physics and the physical world in his Matalib al-'Aliya, criticizes the idea of the Earth's centrality within the universe and "explores the notion of the existence of a multiverse in the context of his commentary" on the Qur'anic verse, "All praise belongs to God, Lord of the Worlds." He raises the question of whether the term "worlds" in this verse refers to "multiple worlds within this single universe or cosmos, or to many other universes or a multiverse beyond this known universe."


 Wikipedia

References

  1. ^ James, William, The Will to Believe, 1895; and earlier in 1895, as cited in OED's new 2003 entry for "multiverse": "1895 W. JAMES in Internat. Jrnl. Ethics 6 10 Visible nature is all plasticity and indifference, a multiverse, as one might call it, and not a universe."
  2. ^ Tegmark, Max (May 2003). "Parallel Universes". Scientific American. 
  3. ^ Tegmark, Max (January 23 2003) (PDF). Parallel Universes. http://space.mit.edu/home/tegmark/multiverse.pdf. Retrieved 2006-02-07.  (PDF)
  4. ^ a b c d "Parallel universes. Not just a staple of science fiction, other universes are a direct implication of cosmological observations.", Tegmark M., Sci Am. 2003 May;288(5):40-51.
  5. ^ Max Tegmark (2003). "Parallel Universes". In "Science and Ultimate Reality: from Quantum to Cosmos", honoring John Wheeler's 90th birthday. J. D. Barrow, P.C.W. Davies, & C.L. Harper eds. Cambridge University Press (2003). arXiv:astro-ph/0302131. Bibcode 2003astro.ph..2131T. 
  6. ^ Zyga, Lisa "Physicists Calculate Number of Parallel Universes", PhysOrg, 16 October 2009.
  7. ^ Tegmark, Max, The Interpretation of Quantum Mechanics: Many Worlds or Many Words?, 1998. Deutsch, David, David Deutsch's Many Worlds, Frontiers, 1998.
  8. ^ Tegmark, Max (January 23 2003) (PDF). Parallel Universes. http://www.wintersteel.com/files/ShanaArticles/multiverse.pdf. Retrieved 2006-02-07.  (PDF).
  9. ^ J. Schmidhuber (1997): A Computer Scientist's View of Life, the Universe, and Everything. Lecture Notes in Computer Science, pp. 201-208, Springer: IDSIA - Dalle Molle Institute for Artificial Intelligence
  10. ^ J. Schmidhuber (2000): Algorithmic Theories of Everything arXiv.org e-Print archive
  11. ^ J. Schmidhuber (2002): Hierarchies of generalized Kolmogorov complexities and nonenumerable universal measures computable in the limit. International Journal of Foundations of Computer Science 13(4):587-612 IDSIA - Dalle Molle Institute for Artificial Intelligence

Monday, 5 July 2010

Materials Science

Materials science is an interdisciplinary field applying the properties of matter to various areas of science and engineering. This scientific field investigates the relationship between the structure of materials at atomic or molecular scales and their macroscopic properties. It incorporates elements of applied physics and chemistry. With significant media attention focused on nanoscience and nanotechnology in recent years, materials science has been propelled to the forefront at many universities. It is also an important part of forensic engineering and failure analysis. Materials science also deals with fundamental properties and characteristics of materials.

Thursday, 1 July 2010

Astrofisika



 

"Terkadang Kita merasa hanya berada pada satu ruang dan waktu tanpa menyadari mungkin ada ruang dan waktu serta semesta lain yang ada selain apa yang kita rasakan saat ini" 
~Arip Nurahman~ 



Bagian Terakhir Perkuliahan Astrofisika

Frontiers and Controversies in Astrophysics

Lecture 24 - The Multiverse and Theories of Everything






verview:


Professor Bailyn begins the class with a discussion of a recent New York Times article about the discovery of a new, earth-like planet. He then discusses concepts such as epicycles, dark energy and dark matter; imaginary ideas invented to explain 96% of the universe. The Anthropic Principle is introduced and the possibility of the multiverse is addressed. Finally, biological arguments are put forth for how complexity occurs on a cosmological scale. The lecture and course conclude with a discussion on the fine differences between science and philosophy.

Problem sets/Reading assignment:


Course Media

Transcript

html

Audio

mp3

Low Bandwidth Video

mov [100MB]

High Bandwidth Video

mov [500MB]

Resources:


Sumber:

1. The University of Yale Open Course Ware

2.
Professor Bailyn Websites

http://www.astro.yale.edu/bailyn/
http://www.astro.yale.edu/



Ucapan Terima Kasih:

1. Bapak. Prof. Dr. Ing. H. B. J. Habibie.

2. Departemen Pendidikan Nasional

3. Kementrian Riset dan Teknologi

4. Lembaga Penerbangan dan Antariksa Nasional


Disusun Ulang Oleh:

Arip Nurahman

Department of Physics, Indonesia University of Education

&

Follower Open Course Ware at MIT-Harvard University, Cambridge.USA.

Semoga Bermanfaat dan Terima Kasih