Friday, 25 February 2011

Astrophysics big Questions

“Space by itself, and time by itself, are doomed to fade away into mere shadows, and only a kind union of the two will preserve an independent reality”
~ Albert Einstein~

Big Questions

  • What are the origin, evolution and fate of the Universe?

    Two of the most profound questions that all cultures, both past and present, have asked are: where did we come from and what is our destiny? Throughout history philosophers, theologians, and scientists have debated these questions. NASA Science seeks to provide quantitative information pertinent to these basic elements of human curiosity by enabling scientists and engineers to construct instruments and make measurements on these topics that were once the purview of thought experiments only.

 

  • How do planets, stars, galaxies and cosmic structure come into being?

    In order to understand how the Universe has changed from its initial simple state following the Big Bang (only cooling elementary particles like protons and electrons) into the magnificent Universe we see as we look at the night sky, we must understand how stars, galaxies and planets are formed.



  • When and how did the elements of life in the Universe arise?

    Following the Big Bang and the gradual cooling of the Universe the primary constituents of the cosmos were the elements hydrogen and helium. Even today, these two elements make up 98% of the visible matter in the Universe. Nevertheless, our world and everything it contains—even life itself—is possible only because of the existence of heavier elements such as carbon, nitrogen, oxygen, silicon, iron, and many, many others. How long did it take the first generations of stars to seed our Universe with the heavy elements we see on Earth today? When in the history of the Universe was there a sufficient supply of heavy elements to allow the formation of prebiotic molecules and terrestrial-like planets upon which those molecules might combine to form life.


  • Is there life elsewhere?

    Are we alone? This question is as old as humankind itself. For millennia, people have turned their eyes to the stars and wondered if there are others like themselves out there. Does life, be it similar to our own or not, exist elsewhere in our Solar System? Our Galaxy? Until some 15 years ago it was uncertain whether there were even any planets outside those in our own Solar System. Today we know of literally hundreds of planets orbiting other stars. Do any of these planets have conditions that would support life? What conditions favor the formation of terrestrial-class planets in developing planetary systems? NASA can help address these questions by developing missions designed to find and characterize extrasolar planetary systems.

    Sources:
    NASA
 
فَإِذَا انشَقَّتِ السَّمَاءُ فَكَانَتْ وَرْدَةً كَالدِّهَانِ

37. Maka apabila langit telah terbelah dan menjadi merah mawar seperti (kilapan) minyak.
 
فَبِأَيِّ آلَاءِ رَبِّكُمَا تُكَذِّبَانِ
 
38. Maka nikmat Tuhanmu manakah yang kamu dustakan?

Akan tiba waktunya ketika langit—yang tidak dapat ditembus, terbatas, dan tampak kukuh—akan hancur. Kata syaqqa bermakna pecah. Ketika penciptaan terfragmentasi, keadaan lainnya akan menguasainya, keadaan yang didominasi oleh panas. Sekarang ini, panas berbagai planet dan bintang ada dalam keseimbangan. 

Dalam sistem tata surya kita, contoh dari ketidakseimbangan dijumpai dalam bentuk bercak matahari. Setiap kali bercak-bercak itu terjadi pada matahari, pastilah ada gangguan dalam sistem tata surya, meskipun tidak cukup besar untuk merusak keseimbangan. Sistem kekuatan yang saling menyeimbangkan ini akan hancur manakala perjalanan di alam semesta ini mencapai titik puncaknya.

Hal sempa juga terjadi pada manusia. Sewaktu ia hidup, tubuh fisik dan spiritualnya ada bersama-sama. Manusia mengandung gema atau citra dari keseluruhan semesta. Semua fungsi dalam tubuh manusia ada dalam keseimbangan—seluruh fakultas atau kemampuannya, segenap muatan listrik yang mengalir melalui otaknya, dan beradaan berbagai syaraf. 

Entitas menakjubkan ini akan hancur ketika jiwa pergi. Ia akan segera membusuk. Inilah yang akan terjadi pada langit: hukum-hukum yang menjaganya akan hancur sehingga langit akan terbelah.

Friday, 18 February 2011

Laboratorium Astrofisika

“Every artist was first an amateur.”
Untuk menjadi yang hebat pasti dimulai dari awal.
Jadi wajar ajah kalo kita emang musti banyak belajar dan sabar untuk maju.

and Yes We are Artist ^_^

Astrophysics Laboratory

 


 
Harvard-Smithsonian Center for Astrophysics
60 Garden Street, Cambridge, MA 02138
Observations with the Submillimeter Array
 
Instructors: Nimesh Patel and Arielle Moullet

 

The Submillimeter Array (SMA), located near the 4000 m summit of Mauna Kea in Hawaii, is the world's first telescope for making images at submillimeter wavelengths with angular resolution comparable to optical telescopes. The SMA is an interferometer that combines the signals received from eight separate, movable, antennas to synthesize an aperture up to 0.5 km wide. The SMA has allocated a half night of (highly competitive) observing time to this class. The project involves learning the basics of interferometry, choosing a celestial source for observation, operating the SMA remotely from Cambridge, calibrating the data using specialized software developed for this purpose, and, finally, analyzing the source brightness distribution to derive physical parameters of interest. The observations are new and different every semester, with the potential to obtain results suitable for publication in a scientific journal.

Laboratory Astrophysics
Science is successful because the physical laws we discover on Earth work everywhere and every when. We use laboratory experiments to expand our understanding of physical processes and then apply these results to the processes throughout the Universe. In some cases laboratory experiments can reproduce similar physics. For example, highly charged plasmas can be created in the laboratory to study the collisions between electrons and ions that occur in the hot solar corona. In other cases, such as in the extreme environments of black holes, we cannot reproduce the conditions. However, even in those cases, the pattern of observed spectral signatures allows us to identify the species and determine some of the physical conditions and processes. Spectral features observed in the solar corona are also observed from black hole sources.  

Useful Link

Thursday, 17 February 2011

Kapal Luar Angkasa Fiksi

The term spacecraft is mainly used to refer to spacecraft that are real or conceived using present technology. The terms spaceship and starship are generally applied only to fictional spacecraft, usually those capable of transporting people. The spaceship is one of the prime elements in science fiction.



Numerous short stories and novels are built up around various ideas for spacecraft, and spacecraft have often been featured in movies. Some hard science fiction books focus on the technical details of the craft, while others treat the spacecraft as a given and delve little into its actual implementation.

Notable fictional spacecraft

See also: List of fictional spaceships
Unidentified flying objects
Some people believe that Unidentified Flying Objects (UFOs) may be alien spacecraft (that is, not of human construction and not originating from Earth), sometimes referred to as flying saucers.

But the term UFO used here in this context refers to observed flying objects for which no identification has been made, though other meanings for the word UFO exist. To date, no known, independently verifiable examples of alien spacecraft are known to exist.

Source:

Wikipedia

Wednesday, 16 February 2011

Jejak Pemikiran Sang Begawan IPTEK Dirgantara

Karena, aku tahu bahwa semua yang ada pasti menjadi tiada pada akhirnya,

dan kematian adalah sesuatu yang pasti,

dan kali ini adalah giliranmu untuk pergi, aku sangat tahu itu.

Tapi yang membuatku tersentak sedemikian hebat,

adalah kenyataan bahwa kematian benar-benar dapat memutuskan kebahagiaan dalam diri seseorang, sekejap saja, lalu rasanya mampu membuatku menjadi nelangsa setengah mati, hatiku seperti tak di tempatnya, dan tubuhku serasa kosong melompong, hilang isi.

Kau tahu sayang, rasanya seperti angin yang tiba-tiba hilang berganti kemarau gersang.

Pada airmata yang jatuh kali ini, aku selipkan salam perpisahan panjang,

pada kesetiaan yang telah kau ukir, pada kenangan pahit manis selama kau ada,

aku bukan hendak megeluh, tapi rasanya terlalu sebentar kau disini.
Mereka mengira aku lah kekasih yang baik bagimu sayang,

tanpa mereka sadari, bahwa kaulah yang menjadikan aku kekasih yang baik.

Siapa yang tak mengenal sosok Presiden RI ke-3, Prof Dr Baharuddin Jusuf Habibie? Sosok yang ramah dan rendah hati ini baru saja ditinggalkan sang istri kembali ke Ilahi untuk selamanya. Namun, itulah beliau, ketegaran dan sikap nrimo-nya tak banyak dipunyai oleh mayoritas orang di negeri ini. Dan hal itu ia terapkan dalam berbagai hal, termasuk dalam “karier teknologi” yang dibangunnya.

Baginya, jabatan atau posisi prestisus tak begitu penting, karena yang terpenting bisa mengabdi bagi nusa dan bangsa. Kecerdasan Habibie sebagai ahli teknologi pesawat terbang dikenal tak hanya di Indonesia, ilmuwan Eropa pun banyak yang mengakui keahliannya. Karena kepakarannya itulah, pada tahun 1973 Presiden Soeharto meminta beliau pulang yang ketika itu usianya masih 35 tahun dan tengah meniti karier di negara maju Eropa, Jerman.

Habibie diminta Soeharto untuk memajukan peradaban teknologi Nusantara. Hal yang kemudian disambut Habibie dengan mendirikan PT Industri Pesawat Terbang Nurtanio, tiga tahun kemudian, 1976. Andi Makmur Makka, dalam bukunya ini, mencoba memotret kembali perjalanan cemerlang sang begawan teknologi yang sangat berharga bagi bangsa kita ini. Maka, lahirlah Jejak Pemikiran Habibie: Peradaban Teknologi untuk Kemandirian Bangsa yang merupakan kumpulan pemikiran sang begawan bidang teknologi.

PT IPTN yang dibidaninya berganti nama menjadi Industri Pesawat Terbang Nusantara (huruf “N” menjadi Nusantara) pada tahun 1985. Soeharto yang begitu percaya dengan kemampuan Habibie selalu mengalokasikan dana besar kepada PT IPTN dalam mengeksplorasi segala perkembangan bidang teknologi yang langsung diarsiteki Habibie. Tak hanya mendirikan IPTN, Habibie berperan besar dalam mendirikan dua perusahaan strategis lainnya, yaitu PT Pindad dan PT PAL.

Dari ketiga perusahaan strategis itu banyak dihasilkan pesawat terbang, jasa di bidang pemeliharaan pesawat, helikopter, amunisi, kapal, tank militer, panser, senapan kaliber, water canon, kendraan RPP-M. Tak hanya itu, dalam skala internasional Habibie pun banyak terlibat dari proyek-proyek besar seperti desain konstruksi Fokker F-28, Air Bus A-300, Hansa Jet 320, pesawat transport DO-31, Transall C-130, CN-235, dan CN-250.

Masa keemasan IPTN mulai surut. Presiden Soeharto atas saran International Monetary Fund (IMF) pada tahun 1992 menyetop dana operasi. Banyak orang menduga IMF sengaja mengerem Habibie karena berencana membuat satelit, pesawat, dan peralatan militer sendiri sehingga mereka (baca: Amerika Serikat) ketakutan akan kehilangan pasar strategis dan potensial, terlebih perindustrian Indonesia akan menjadi pesaingan kelak.

Buku ini hadir untuk meretas kembali jejak-pikir Habibie yang telah banyak berkarya untuk kemajuan teknologi bangsa kita, walau mungkin bagi sebagian orang PT IPTN dan PT DI sebagai produk pikirnya dianggap belum maksimal. Namun, paling tidak, Habibie telah mampu menjadi inspirasi bagi banyak kalangan untuk tetap berkarya sesuai bidangnya masing- masing. 





“Sosok dan pemikiran Prof. Dr. B.J. Habibie dalam dunia Iptek tidak diragukan lagi. N-250 dan PT DI adalah buah karya beliau yang membanggakan kita. Buku ini sangat menarik dan pantas dibaca oleh seluruh insan Iptek. Kehadiran buku ini akan menambah khazanah pemikiran dalam pembangunan Iptek di Indonesia.” —Suharna Surapranata, Menteri Riset dan Teknologi, Periode 2009-2014



Ketika B.J. Habibie yang waktu itu berusia 35 tahun memutuskan pulang kampung dari Jerman Barat pada 1973, seluruh kolega dan pakar teknologi Eropa tak habis pikir atas keputusannya itu. Untuk alasan apa Habibie kembali ke Indonesia yang saat itu masih tertatih-tatih sebagai negara berkembang, dan meninggalkan karier cemerlangnya sebagai pakar teknologi penerbangan yang disegani di Barat?

Pilihannya menyambut permintaan Soeharto merancang fondasi kemandirian Iptek Indonesia berbuah cetak biru peradaban teknologi yang disebut “Berawal di Akhir dan Berakhir di Awal”—proses transformasi dan integrasi Iptek yang dipercepat dan progresif. Industri-industri strategis seperti PT Dirgantara Indonesia (dahulu IPTN) dan PT PAL, menjadi jejak kemandirian Iptek Indonesia yang dirintis Habibie dan menunjukkan kekuatan gagasannya. Bahkan, krisis ekonomi dan politik yang melanda Indonesia tak memusnahkan aset-aset industri ini. PT Dirgantara Indonesia, yang sempat disindir melayani order cetakan panci pascavonis pailit, kini memenangi tender empat pesawat penjaga pantai untuk Korea Selatan senilai US$ 94,5 juta, dan menjajaki proyek pesawat tempur KFX senilai 8 miliar dolar AS. Tak ketinggalan PT PAL yang mulai membidik berbagai kontrak strategis, antara lain pengadaan kapal pengawal rudal TNI.

Buku ini merangkai jejak pemikiran B.J. Habibie selama menjabat sebagai Menteri Riset dan Teknologi sejak tahun 1978 hingga Maret 1998, gagasan-gagasannya tentang arah industri strategis dan pembangunan Iptek yang relevan dan tepat untuk sebuah negara seperti Indonesia. Sebuah peradaban teknologi untuk kemandirian bangsa yang diidam- idamkannya, lebih ketimbang jabatan prestisius korporasi internasional, ataupun reputasi sebagai pakar teknologi ternama.



“Memaparkan tentang peran besar B.J. Habibie dalam mengejar ketertinggalan bangsa Indonesia di bidang Iptek. Wajib dibaca oleh setiap insan yang mendambakan daya saing dan kemandirian bangsa.” —Dr. Ir. Marzan A. Iskandar, Kepala BPPT





 (Sang Professor Cinta dengan Para Buah Hatinya)


Peresensi adalah Yuyu Yuhanah, pemerhati buku, tinggal di Depok

Thursday, 10 February 2011

Indonesian Space Force Command


Indonesian Space Force Command   

 Komando Untuk Keamanan Luar Angkasa 

Dari Angkatan Antariksa Indonesia

"Kami Menjelajahi Alam Raya untuk Menemukan Keagungan Sang Maha Kuasa"

 ~Gen. Arip Nurahman~

 

 

 

(Komando Pasukan Khusus Angkatan Antariksa Indonesia)

 

(Korps Pasukan Khas Angkatan Udara)

 

Jet-powered fighters

It has become common in the aviation community to classify jet fighters by "generations" for historical purposes. There are no official definitions of these generations; rather, they represent the notion that there are stages in the development of fighter design approaches, performance capabilities, and technological evolution.

The timeframes associated with each generation are inexact and are only indicative of the period during which their design philosophies and technology employment enjoyed a prevailing influence on fighter design and development. These timeframes also encompass the peak period of service entry for such aircraft.

4.5th generation jet fighters (1990s to the present)

The end of the Cold War in 1991 led many governments to significantly decrease military spending as a "peace dividend". Air force inventories were cut, and research and development programs intended to produce what was then anticipated to be "fifth-generation" fighters took serious hits; many programs were canceled during the first half of the 1990s, and those which survived were "stretched out". While the practice of slowing the pace of development reduces annual investment expenses, it comes at the penalty of increased overall program and unit costs over the long-term.

In this instance, however, it also permitted designers to make use of the tremendous achievements being made in the fields of computers, avionics and other flight electronics, which had become possible largely due to the advances made in microchip and semiconductor technologies in the 1980s and 1990s. This opportunity enabled designers to develop fourth-generation designs – or redesigns – with significantly enhanced capabilities. These improved designs have become known as "Generation 4.5" fighters, recognizing their intermediate nature between the 4th and 5th generations, and their contribution in furthering development of individual fifth-generation technologies.

The primary characteristics of this sub-generation are the application of advanced digital avionics and aerospace materials, modest signature reduction (primarily RF "stealth"), and highly integrated systems and weapons. These fighters have been designed to operate in a "network-centric" battlefield environment and are principally multirole aircraft. Key weapons technologies introduced include beyond-visual-range (BVR) AAMs; Global Positioning System (GPS)-guided weapons, solid-state phased-array radars; helmet-mounted sights; and improved secure, jamming-resistant datalinks. Thrust vectoring to further improve transient maneuvering capabilities have also been adopted by many 4.5th generation fighters, and uprated powerplants have enabled some designs to achieve a degree of "supercruise" ability. Stealth characteristics are focused primarily on frontal-aspect radar cross section (RCS) signature-reduction techniques including radar-absorbent materials (RAM), L-O coatings and limited shaping techniques.

"Half-generation" designs are either based on existing airframes or are based on new airframes following similar design theory as previous iterations; however, these modifications have introduced the structural use of composite materials to reduce weight, greater fuel fractions to increase range, and signature reduction treatments to achieve lower RCS compared to their predecessors. Prime examples of such aircraft, which are based on new airframe designs making extensive use of carbon-fibre composites, include the Eurofighter Typhoon, Dassault Rafale, and Saab JAS 39 Gripen NG.

Apart from these fighter jets, most of the 4.5 generation aircraft are actually modified variants of existing airframes from the earlier fourth generation fighter jets. Such fighter jets are generally heavier and examples include the Boeing F/A-18E/F Super Hornet which is an evolution of the 1970s F/A-18 Hornet design, the F-15E Strike Eagle which is a ground-attack variant of the Cold War-era F-15 Eagle, the Sukhoi Su-30MKI which is a further development of the Su-30 fighter and the Mikoyan MiG-29M/35, an upgraded version of the 1980s MiG-29. The Su-30MKI and MiG-35 use two- and three-dimensional thrust vectoring engines respectively so as to enhance maneuvering. Most 4.5 generation aircraft are being retrofitted with Active Electronically Scanned Array (AESA) radars and other state-of-the art avionics such as electronic counter-measure systems and forward looking infrared.

4.5 generation fighters first entered service in the early 1990s, and most of them are still being produced and evolved. It is quite possible that they may continue in production alongside fifth-generation fighters due to the expense of developing the advanced level of stealth technology needed to achieve aircraft designs featuring very low observables (VLO), which is one of the defining features of fifth-generation fighters. Of the 4.5th generation designs, only the Super Hornet, Strike Eagle, and the Rafale have seen combat action.
The United States Government defines 4.5 generation fighter aircraft as those that "(1) have advanced capabilities, including— (A) AESA radar; (B) high capacity data-link; and (C) enhanced avionics; and (2) have the ability to deploy current and reasonably foreseeable advanced armaments."
See also: List of 4.5 generation jet fighters


Powered By:
Tentara Nasional Indonesia Angkatan Darat (Indonesian Army)
 


Tentara Nasional Indonesia Angkatan Laut (Indonesian Navy)

Tentara Nasional Indonesia Angkatan Udara (Indonesian Air Force)

Kepolisian Negara Republik Indonesia (Indonesian Police)



 
Sumber: Wikipedia

Monday, 7 February 2011

Belajar Fisika Itu Menyenangkan

Mari Kita Membudayakan Pembelajaran yang asyik dan menyenangkan.

Wednesday, 2 February 2011

Sekolah Pendidikan Robotika Indonesia

 
Indonesian Robotics Education School

Visi



Melahirkan Ahli-ahli Robotika Bertaraf Internasional yang senantiasa Bertafakur, Bertasyakur dan Bertadabur terhadap Keagungan Yang Maha Kuasa





Misi

1. Melahirkan Ahli Robotika Berkualitas Internasional Berkarakteristik Lokal di tiap Kabupaten atau Kota Setiap Tahun Minimal 2 Orang.



2. Kaderisasi yang berkelanjutan dan terarah





Program



1. Mempelajari alat-alat elektronika sederhana di Sekeliling Kehidupan kita



2. Mempelajari bahasa-bahasa pemrograman komputer dengan tekun dan rajin



3. Mengembangkan kurikulum pendidikan Robotika





Langkah Setrategis Sederhana



1. Promosi Kesekolah-sekolah Kejuruan dan Menengah atas untuk membuat club-club kecil penggemar Otomasi, Kendali dan Robotika



2. Mengadakan Ivent-ivent kecil dan sederhana megenai Robotika



3. Istiqomah





NASA Robotics Alliance Project
Home
About RAP
Site Map
Contact Us

Events
Upcoming Events
FIRST
Bot Ball
BEST
Competitions
Webcasts
Highlights


Educators
Bright Ideas
K to 5th
6th to 8th
9th to 12th
Submit a Lesson
Discussion Boards
Educational Matrix


Students
Academy
Challenges
FAQ
Inspiration
Projects
Work


Archive
New Additions
Webcasts
Videos
Features
Robot News


Links
New Links
NASA Links
Resources Links
Industry Links
University/Government Links
Other Links

A list of course material related to robotic field is provided underneath.
Kinematics
Dynamics
Trajectory
Control System
Locomotion
Navigation
Vision
Intelligence

Tuesday, 1 February 2011

Indonesian Space Force Command


Indonesian Space Force Command   

 Komando Untuk Keamanan Luar Angkasa 

Dari Angkatan Antariksa Indonesia

"Kami Menjelajahi Alam Raya untuk Menemukan Keagungan Sang Maha Kuasa"

 ~Gen. Arip Nurahman~

 

 

 

(Komando Pasukan Khusus Angkatan Antariksa Indonesia)

 

(Korps Pasukan Khas Angkatan Udara)

 

Jet-powered fighters

It has become common in the aviation community to classify jet fighters by "generations" for historical purposes. There are no official definitions of these generations; rather, they represent the notion that there are stages in the development of fighter design approaches, performance capabilities, and technological evolution.

The timeframes associated with each generation are inexact and are only indicative of the period during which their design philosophies and technology employment enjoyed a prevailing influence on fighter design and development. These timeframes also encompass the peak period of service entry for such aircraft.

  Fourth generation jet fighters (circa 1970 to mid-1990s)

Fourth-generation fighters continued the trend towards multirole configurations, and were equipped with increasingly sophisticated avionics and weapon systems. Fighter designs were significantly influenced by the Energy-Maneuverability (E-M) theory developed by Colonel John Boyd and mathematician Thomas Christie, based upon Boyd's combat experience in the Korean War and as a fighter tactics instructor during the 1960s. E-M theory emphasized the value of aircraft specific energy maintenance as an advantage in fighter combat.

Boyd perceived maneuverability as the primary means of getting "inside" an adversary's decision-making cycle, a process Boyd called the "OODA loop" (for "Observation-Orientation-Decision-Action"). This approach emphasized aircraft designs that were capable of performing "fast transients" – quick changes in speed, altitude, and direction – as opposed to relying chiefly on high speed alone.



Sukhoi Su-27 'Flanker'

E-M characteristics were first applied to the F-15 Eagle, but Boyd and his supporters believed these performance parameters called for a small, lightweight aircraft with a larger, higher-lift wing. The small size would minimize drag and increase the thrust-to-weight ratio, while the larger wing would minimize wing loading; while the reduced wing loading tends to lower top speed and can cut range, it increases payload capacity and the range reduction can be compensated for by increased fuel in the larger wing. The efforts of Boyd's "Fighter Mafia" would result in General Dynamics' (now Lockheed Martin's) F-16 Fighting Falcon.

The F-16's manoeuvrability was further enhanced by its being designed to be slightly aerodynamically unstable. This technique, called "relaxed static stability" (RSS), was made possible by introduction of the "fly-by-wire" (FBW) flight control system (FLCS), which in turn was enabled by advances in computers and system integration techniques. Analog avionics, required to enable FBW operations, became a fundamental requirement and began to be replaced by digital flight control systems in the latter half of the 1980s. Likewise, Full Authority Digital Engine Controls (FADEC) to electronically manage powerplant performance were introduced with the Pratt & Whitney F100 turbofan. The F-16's sole reliance on electronics and wires to relay flight commands, instead of the usual cables and mechanical linkage controls, earned it the sobriquet of "the electric jet". Electronic FLCS and FADEC quickly became essential components of all subsequent fighter designs.

Other innovative technologies introduced in fourth-generation fighters include pulse-Doppler fire-control radars (providing a "look-down/shoot-down" capability), head-up displays (HUD), "hands on throttle-and-stick" (HOTAS) controls, and multi-function displays (MFD), all of which have become essential equipment. Composite materials in the form of bonded aluminum honeycomb structural elements and graphite epoxy laminate skins began to be incorporated into flight control surfaces and airframe skins to reduce weight. Infrared search-and-track (IRST) sensors became widespread for air-to-ground weapons delivery, and appeared for air-to-air combat as well. "All-aspect" IR AAM became standard air superiority weapons, which permitted engagement of enemy aircraft from any angle (although the field of view remained relatively limited). The first long-range active-radar-homing RF AAM entered service with the AIM-54 Phoenix, which solely equipped the Grumman F-14 Tomcat, one of the few variable-sweep-wing fighter designs to enter production. Even with the tremendous advancement of Air to Air missiles in this era, internal guns were standard equipment.

Another revolution came in the form of a stronger reliance on ease of maintenance, which led to standardisation of parts, reductions in the numbers of access panels and lubrication points, and overall parts reduction in more complicated equipment like the engines. Some early jet fighters required 50 man-hours of work by a ground crew for every hour the aircraft was in the air; later models substantially reduced this to allow faster turn-around times and more sorties in a day. Some modern military aircraft only require 10 man-hours of work per hour of flight time, and others are even more efficient.


Aerodynamic innovations included variable-camber wings and exploitation of the vortex lift effect to achieve higher angles of attack through the addition of leading-edge extension devices such as strakes.

Unlike interceptors of the previous eras, most fourth-generation air-superiority fighters were designed to be agile dogfighters (although the Mikoyan MiG-31 and Panavia Tornado ADV are notable exceptions). The continually rising cost of fighters, however, continued to emphasize the value of multirole fighters. The need for both types of fighters led to the "high/low mix" concept which envisioned a high-capability and high-cost core of dedicated air-superiority fighters (like the F-15 and Su-27) supplemented by a larger contingent of lower-cost multi-role fighters (such as the F-16 and MiG-29).

Most fourth-generation fighter-bombers, such as the Boeing F/A-18 Hornet and Dassault Mirage 2000, are true multirole warplanes, designed as such from the start. This was facilitated by multimode avionics which could switch seamlessly between air and ground modes. The earlier approaches of adding on strike capabilities or designing separate models specialized for different roles generally became passé (with the Panavia Tornado being an exception in this regard). Dedicated attack roles were generally assigned either to interdiction strike aircraft such as the Sukhoi Su-24 and Boeing F-15E Strike Eagle or to armored "tank-plinking" close air support (CAS) specialists like the Fairchild-Republic A-10 Thunderbolt II and Sukhoi Su-25.

Perhaps the most novel technology to be introduced for combat aircraft was "stealth", which involves the use of special "low-observable" (L-O) materials and design techniques to reduce the susceptibility of an aircraft to detection by the enemy's sensor systems, particularly radars. The first stealth aircraft to be introduced were the Lockheed F-117 Nighthawk attack aircraft (introduced in 1983) and the Northrop Grumman B-2 Spirit bomber (which first flew in 1989). Although no stealthy fighters per se appeared amongst the fourth generation, some radar-absorbent coatings and other L-O treatments developed for these programs are reported to have been subsequently applied to fourth-generation fighters.
See also: List of fourth generation jet fighters
Powered By:
Tentara Nasional Indonesia Angkatan Darat (Indonesian Army)
 



Tentara Nasional Indonesia Angkatan Laut (Indonesian Navy)

Tentara Nasional Indonesia Angkatan Udara (Indonesian Air Force)

Kepolisian Negara Republik Indonesia (Indonesian Police)



 
Sumber: Wikipedia