Tuesday, 30 April 2013

Mempelajari Ipteks Nuklir ke Negeri Eiffel

Peta Pembangkit Tenaga Nuklir di Prancis

Dalam bidang energi, saat ini Pemerintah Perancis berusaha mengalihkan ketergantungan terhadap minyak ke pemanfaatan energi nuklir dan berhasil menurunkan proporsi minyak bumi dalam konsumsi energi final dari 71% (1973) menjadi 39% (2003). Perancis merupakan negara dengan pemanfaatan pembangkit listrik tenaga nuklir terbesar di dunia dan peringkat dua dunia dalam kapasitas total nuklir terinstal.


Nuclear Power in France

   *France derives over 75% of its electricity from nuclear energy. This is due to a long-standing policy based on energy security.
   *France is the world's largest net exporter of electricity due to its very low cost of generation, and gains over EUR 3 billion per year from this.
   *France has been very active in developing nuclear technology. Reactors and fuel products and services are a major export.
   *It is building its first Generation III reactor and planning a second.
   *About 17% of France's electricity is from recycled nuclear fuel.


Perancis merupakan negara yang memiliki reaktor nuklir paling banyak kedua di dunia, yaitu sebanyak 59 reaktor nuklir. Perancis dipaksa memiliki banyak reaktor nuklir, karena negara ini tidak memiliki sumber daya energi yang berupa minyak, sebagai sumber energi tersebut. 

Pembangkit Tenaga Nuklir Perancis menghasilkan energi 540,6 Twh (540,6 Milyar Watt Jam) dan telah memenuhi sebanyak 78,8 % kebutuhan energi listrik di Perancis, angka ini adalah persentase tertinggi di dunia. Sehingga tarif listrik di Perancis merupakan yang termurah di Eropa. 

Sedangkan Amerika Serikat, mempunyai 104 reaktor nuklir, Amerika adalah negara yang paling banyak memiliki reaktor nuklir, yaitu sebanyak 104 reaktor nuklir komersial. Sebanyak 69 merupakan reaktor air bertenaga dan 35 reaktor air mendidih. 

Ada sebanyak 65 pembangkit listrik tenaga nuklir yang telah memiliki lisensi untuk beroperasi. Pembangkit tersebut menghasilkan energi listrik sebesar 806,2 Twh dan telah mensuplai 19,6 % kebutuhan listrik total di seluruh AS pada tahun 2008.



Bagaimana Bisa Negeri Eiffel ini Maju dalam Bidang Iptek Nuklir?

Sejarah

France has a long relationship with nuclear power, starting with Henri Becquerel's discovery of natural radioactivity in the 1890s and continued by famous nuclear scientists like Pierre and Marie Curie.

Before World War II, France had been heavily involved in nuclear research through the work of the Joliot-Curies. In 1945 the Provisional Government of the French Republic (GPRF) created the Commissariat à l'Énergie Atomique (CEA) governmental agency, and Nobel prize winner Frédéric Joliot-Curie, member of the French Communist Party (PCF) since 1942, was appointed high-commissioner.

He was relieved of his duties in 1950 for political reasons, and would be one of the 11 signatories to the Russell-Einstein Manifesto in 1955. The CEA was created by Charles de Gaulle on October 18, 1945. Its mandate is to conduct fundamental and applied research into many areas, including the design of nuclear reactors, the manufacturing of integrated circuits, the use of radionucleides for medical treatments, seismology and tsunami propagation, and the safety of computerized systems.

Nuclear research was discontinued for a time after the war because of the instability of the Fourth Republic and the lack of finances available. However, in the 1950s a civil nuclear research program was started, a by-product of which would be plutonium.

In 1956 a secret Committee for the Military Applications of Atomic Energy was formed and a development program for delivery vehicles started. In 1957, soon after the Suez Crisis and the diplomatic tension with both the USSR and the United States, French president René Coty decided the creation of the C.S.E.M. in the then French Sahara, a new nuclear tests facility replacing the C.I.E.E.S. See France and nuclear weapons.


The first nuclear power plant in France was opened in 1962.

Strategi dan Rencana Messmer 

As a direct result of the 1973 oil crisis, on March 6, 1974 Prime Minister Pierre Messmer unexpectedly announced what became known as the 'Messmer Plan', a huge nuclear power program aimed at generating all of France's electricity from nuclear power. At the time of the oil crisis most of France's electricity came from foreign oil, and while it was strong in heavy engineering capabilities, France had few indigenous energy resources.


The announcement of the Messmer Plan, which was imposed without public or parliamentary debate, also led to the foundation of the Groupement des scientifiques pour l'information sur l'énergie nucléaire (Association of Scientists for Information on Nuclear Energy), formed after around 4,000 scientists signed a petition of concern over the government's action, known as the Appeal of the 400 after the 400 scientists who initially signed it.


The plan envisaged the construction of around 80 nuclear plants by 1985 and a total of 170 plants by 2000. Work on the first three plants, at Tricastin, Gravelines, and Dampierre started the same year and France installed 56 reactors over the next 15 years.



Para Pelajar Mengunjungi Fasilitas Penelitian Nuklir dan Fisika Partikel di CERN

Ekonomi dan Manajemen Energi Nuklir Prancis

Électricité de France (EDF) the country's main electricity generation and distribution company — manages the country's 59 nuclear power plants. EDF is substantially owned by the French Government, with around 85% of EdF shares in government hands . 78.9% of Areva shares are owned by the French public sector company CEA and are therefore in public ownership EdF remains heavily in debt. Its profitability suffered during the recession which began in 2008. It made €3.9 billion in 2009, which fell to €1.02 billion in 2010, with provisions set aside amounting to €2.9 billion.

The Nuclear industry has been accused of significant cost overruns and failing to cover the total costs of operation, including waste management and decommissioning.

In 2001, nuclear construction and services company Areva was created by the merger of CEA Industrie, Framatome and Cogema (now Areva NC). Its main shareholder is the French owned company CEA, but the German government also holds, through Siemens, 34% of the shares of Areva's subsidiary, Areva NP, in charge of building the EPR (third-generation nuclear reactor).


EdF said its third-generation nuclear reactor EPR project at its Flamanville, northern France, plant will be delayed until 2016, due to "both structural and economic reasons," which will bring the project's total cost to EUR8.5 billion.

Similarly, the cost of the EPR to be built at Olkiuoto, Finland has escalated. Areva and the utility involved "are in bitter dispute over who will bear the cost overruns and there is a real risk now that the utility will default. In contrast, the other reactors at Taishan in Guangdong, China are ahead or on schedule. The estimated completion is expected at 46 months, considerably faster then in France or Finland.

EdF has suggested that if the political environment causes the EPR costs to overrun, the design would be replaced with a cheaper and simpler Franco-Japanese design, the Atmea for which the design will be completed by 2013, or the already operating Franco-Chinese design, the CPR-1000.

Reaktor-Reaktor Fusi 
While fusion power is not expected to be feasible for many more decades, France has shown promise to be a forerunner in the technology by winning the bid to host the ITER reactor in Cadarache. The ITER should start actual fusion around 2018. However, ITER does not plan to generate any commercially available energy. Instead the construction of another plant, named DEMO, will test the feasibility of commercial fusion, before it is integrated into the energy grid.



Video Pembuatan Reaktor Fusi Nuklir di Prancis

Semoga Bermanfaat

Menuju Kemerdekaan Energi di Indonesia 

Sumber:

http://en.wikipedia.org/wiki/Nuclear_power_in_France
http://www.iter.org/
http://www.esdm.go.id/
http://www.world-nuclear.org/
http://home.web.cern.ch/

Bagaimana Mengembangkan Mesin Pesawat Terbang?

"Ketika ayah saya meninggal sedang shalat, Ibu Saya bersumpah bahwa anak-anaknya kelak akan berguna bagi masyarakat, bangsa dan agama" 
~Prof. Habibie~


Sebuah Cita-cita mengembangkan Permesinan untuk Pesawat Terbang


An aircraft engine is the component of the propulsion system for an aircraft that generates mechanical power. Aircraft engines are almost always either lightweight piston engines or gas turbines.



Aircraft Engine Manufacturing Industry

In 2012, the size of the aircraft engine manufacturing market was almost $40 billion. There are over 350 manufacturing companies in the United States employing over 70 thousand. For a list of all manufacturers in the world see the List of aircraft engines.

Turbojet Engine


Turbojets consist of an air inlet, an air compressor, a combustion chamber, a gas turbine (that drives the air compressor) and a nozzle. The air is compressed into the chamber, heated and expanded by the fuel combustion and then allowed to expand out through the turbine into the nozzle where it is accelerated to high speed to provide propulsion.


Photo by: Me at PT. Dirgantara Indonesia

Kunjungi Juga:

1. PT. Aero Internasional Teknologi Bandung: Aircraft Piston Engine Repair, Overhaul and Test.
http://www.aerointek.com/

2. MTU Aero Engines GmbH is Germany's leading aircraft engine manufacturer. MTU develops, manufactures and provides service support for military and civil aircraft engines.
http://mtu.de/de/

3. Welcome to the Michigan Tech Aerospace Enterprise
http://www.aerospace.mtu.edu/

4.Official corporate site, featuring information about the corporation and its products and services, including airplanes, space systems, and integrated defense
http://www.boeing.com/boeing/


Semoga Bermanfaat

Maju Terus Indonesia

Monday, 29 April 2013

Inovasi Bahan Bakar Nuklir


Teknik Difraksi Neutron dalam Analisis Fasa dan Sifat Kekerasan Paduan ZrNbMoGe 
untuk Kelongsong Bahan Bakar Nuklir

Oleh:  Dr. Parikin, Dr. B. Bandriyana dan Dr. A. H. Ismoyo
(BATAN)

Bahan bakar nuklir adalah semua jenis material yang dapat digunakan untuk menghasilkan energi nuklir, demikian bila dianalogikan dengan bahan bakar kimia yang dibakar untuk menghasilkan energi. 

Hingga saat ini, bahan bakar nuklir yang umum dipakai adalah unsur berat fissi yang dapat menghasilkan reaksi nuklir berantai di dalam reaktor nuklir;Bahan bakar nuklir dapat juga berarti material atau objek fisik (sebagai contoh bundel bahan bakar yang terdiri dari batang bahan bakar yang disusun oleh material bahan bakar, bisa juga dicampur dengan material struktural, material moderator atau material pemantul (reflector) neturon. 

Bahan bakar nuklir fissil yang seirng digunakan adalah 235U dan239Pu, dan kegiatan yang berkaitan dengan penambangan, pemurnian, penggunaan dan pembuangan dari material-material ini termasuk dalam siklus bahan bakar nuklir. Siklus bahan bakar nuklir penting adanya karena terkait dengan PLTN dan senjata nuklir.





Proses dan Siklus Bahan Bakar Nuklir

The most common fissile nuclear fuels are uranium-235 (235U) and plutonium-239 (239Pu). The actions of mining, refining, purifying, using, and ultimately disposing of nuclear fuel together make up the nuclear fuel cycle.

Not all types of nuclear fuels create power from nuclear fission. Plutonium-238 and some other elements are used to produce small amounts of nuclear power by radioactive decay in radioisotope thermoelectric generators and other types of atomic batteries. Also, light nuclides such as tritium (3H) can be used as fuel for nuclear fusion.

Nuclear fuel has the highest energy density of all practical fuel sources.


According to the International Nuclear Safety Center the thermal conductivity of uranium dioxide can be predicted under different conditions by a series of equations.
The bulk density of the fuel can be related to the thermal conductivity
Where ρ is the bulk density of the fuel and ρtd is the theoretical density of the uranium dioxide.
Then the thermal conductivity of the porous phase (Kf) is related to the conductivity of the perfect phase (Ko, no porosity) by the following equation. Note that s is a term for the shape factor of the holes.
Kf = Ko(1 − p/1 + (s − 1)p)
Rather than measuring the thermal conductivity using the traditional methods in physics such as Lees' disk, the Forbes' method or Searle's bar it is common to use a laser flash method where a small disc of fuel is placed in a furnace. 

After being heated to the required temperature one side of the disc is illuminated with a laser pulse, the time required for the heat wave to flow through the disc, the density of the disc, and the thickness of the disk can then be used to calculate and determine the thermal conductivity.
λ = ρCpα
If t1/2 is defined as the time required for the non illuminated surface to experience half its final temperature rise then.
α = 0.1388 L2/t1/2
  • L is the thickness of the disc

Semoga Bermanfaat

Photo oleh: A.N. at Nuclear Energy Conference 

Sumber:




http://nuclearscienceandtechnology.blogspot.com/  (Sekolah Sains dan Teknologi Nuklir)

http://ocw.mit.edu/courses/nuclear-engineering/ (Nuclear Engineering OpenCourseWare from MIT)

http://fisika.upi.edu/ (Jurusan Pendidikan Fisika, FPMIPA Universitas Pendidikan Indonesia)

Sunday, 28 April 2013

Advanced Mechanical Suit of Armor: Baju Perang Cerdas Masa Depan


"Ladies, children, sheep. Some people call me a terrorist. I consider myself a teacher."
 ~The Mandarin Advanced Idea Mechanics~


"I'm Tony Stark. I build neat stuff, got a great girl, occasionally save the world. 
So why can't I sleep?"
~Tony Stark~

Ilmu Pengetahuan dan Teknologi di dunia terus berkembang. Di tahun 2030 dan 2050, militer di seluruh dunia akan mampu memanfaatkan teknologi yang belum pernah ada sebelumnya dalam sejarah manusia. 

Dengan teknologi seperti robotik dan nanoteknologi, maka kita akan bisa menciptakan tentara-tentara super masa depan.

Cerita Baju Perang Nabi Daud

Nabi Daud diberikan anugerah oleh Allah berupa kemampuan untuk menundukan besi, seperti di lukiskan pada (QS Saba [34]: 10-11, dan Al-Anbiyaa’[21]: 80).

“Dan Kami ajarkan kepada Daud membuat baju besi untuk kamu, guna memelihara kamu dalam peperanganmu; maka hendaklah kamu bersyukur (kepada Allah).”

Besi-besi yang keras itu mampu dilunakkan Nabi Daud untuk membuat berbagai alat kebutuhan hidup serta dijadikan perisai (pakaian perang).

Semuanya ada manfaatnya. Dari berbagai perumpamaan yang Allah ciptakan itu, justru dapat diketahui apakah manusia itu termasuk orang yang bersyukur atau ingkar terhadap nikmat dan ciptaan Allah SWT.

Demikian pula ketika Allah menciptakan besi. Didalamnya terdapat manfaat yang sangat besar bagi umat manusia.

“Dan Kami ciptakan besi yang padanya terdapat kekuatan yang hebat dan berbagai manfaat bagi manusia, (supaya mereka mempergunakan besi itu) dan supaya Allah mengetahui siapa yang menolong (agama)-Nya dan rasul-rasul-Nya, padahal Allah tidak dilihatnya. Sesungguhnya Allah Maha Kuat lagi Maha Perkasa.” (QS Al-Hadid[57]: 25). 

Selain dapat digunakan sebagai perisai, besi juga dapat dimanfaatkan untuk membangun rumah, gedung bertingkat, kendaraan transportasi, barang hiasan, dan lain sebagainya.

BAJU PELINDUNG SUPER DENGAN NANOTEKNOLOGI dan ARTIFICIAL INTELLIGENCE 

Baju tentara masa depan akan jauh lebih kuat dari Kevlar dan super ringan. Ini dimungkinkan dengan menggunakan material nanoteknologi yang super kuat. Beberapa bahan nanoteknologi seperti carbon nanotube kerasnya bahkan melebihi intan. 

Baju ini akan jauh lebih tahan peluru bahkan yang berkaliber besar, tahan ledakan yang sangat kuat, bahkan tahan terhadap cuaca ekstrim seperti panas atau dingin yang ekstrim. Saat ini yang banyak digunakan adalah bahan dari metal atau komposit keramik bobotnya berat dan mengganggu fleksibiltas serta mobilitas tentara. 

Sedangkan pakaian yang diperkuat nanoteknologi akan seringan dan sefleksibel baju dari kain biasa. Ini membuat tentara ini akan mampu bergerak lebih cepat dan efisien, rapid movement. 

Departemen Pertahanan Amerika bahkan sedang melakukan riset baju pelindung yang mampu mengantisipasi datangnya peluru seperti halnya airbag dalam mobil kelas atas. 

Ketika peluru datang, maka sensor super canggihnya akan langsung memperkuat bagian yang akan terkena sasaran peluru tersebut.

Bagaimana kalau baju pelindung hebat itu dilengkapi kecerdasan buatan yang canggih?

Strong Artificial Intelligence.



"Saudara-saudara Ingat Jangan Lupa Shalat 5 Waktu Ya"
~The Rise of Ihsan Stark~

Lihat Juga:


Defense Advanced Research Projects Agency



DARPA is an agency of the United States Department of Defense responsible for the development of new technologies for use by the military

Membangun Indonesian Defense Advanced Research Project Agency

Semoga Bermanfaat.

Semangat!

Weapons Race: Mewaspadai Perlombaan Senjata Antar Bangsa

Pesawat Tempur Siluman Canggih Raptor 


"If you know the enemy and know yourself you need not fear the results of a hundred battles." 
~Sun Tzu~ 

Perang saudara di Suriah yang memakan puluhan ribu nyawa manusia belum selesai sampai saat ini, provokasi korea utara dengan persenjataan nuklir-nya semakin memanas. Arogansi Israel yang terus menggerus wilayah Palestina tak tertahankan.

Ambisi Negeri Paman Sam untuk meluluh lantakan Negeri Para Mullah, Iran semakin tak terbendung. 

Bagaimana posisi Indonesia? 

Indonesia berencana membeli lebih dari selusin jet temput Sukhoi buatan Rusia serta kapal patroli, rudal dan tank sebagai bagian dari rencana modernisasi militer selama lima tahun senilai 15 milyar dollar. 

Indonesia sebagai kekuatan ekonomi terbesar di Asia Tenggara, telah meningkatkan anggaran pertahanannya sejak 2010 untuk meningkatkan kapasitas militer dalam melindungi jalur pelayaran, pelabuhan dan perbatasan maritim. 

Kebijakan itu juga didorong kecemasan bahwa Indonesia telah ketinggalan dari Cina, Singapura, Vietnam, Thailand dan negara-negara Asia lainnya yang telah meningkatkan pengeluaran bidang pertahanan. 

Picu perlombaan senjata? 

Menteri Pertahanan Prof. Purnomo Yusgiantoro mengatakan, Indonesia ingin membeli satu skuadron penuh jet tempur Sukhoi serta kapal patroli.

Prof. Purnomo mengingatkan para anggota delegasi dalam sebuah konferensi militer bahwa peningkatan tajam dalam anggaran militer dan memperkuat kemampuan dalam bidang pertahanan di kawasan akan menebarkan bibit ketidakpercayaan dan menjadi bahan bakar rivalitas. 

“Jika ini tidak disertai dengan transparansi yang bisa meningkatkan kepercayaan dan keyakinan, itu akan beresiko memunculkan sebuah perlombaan senjata yang akan berdampak negatif bagi perdamaian dan stabilitas,“ kata dia.

Modernisasi militer

Yang paling penting adalah bagaimana supaya Industri Strategis Pertahanan Bangsa dapat menyerap banyak tenaga kerja lokal, sistem alih Ipteks yang baik dan mentransformasikan kegiatan Industrialisasi di tanah air untuk semakin maju dan canggih.

Kunjungi Juga:


Lockheed Martin


Research, design, development, manufacture and integration of advanced technology systems, products and services. Specialties include aeronautics.

Sukhoi Company (JSC)


Sukhoi - is Russia's major aircraft holding company, employing more than 26,000 people. 100% of stock of the Sukhoi Aviation Holding Company (JSC).



Kepala Badan Sarana Pertahanan (Kabaranahan) Kemhan RI 
Mayjen TNI Ediwan Prabowo  dan Dr. Vadim Araksin.
Realisasi pengadaan Sukhoi Su-30 MK2 menjadi salah satu perkembangan positif dari hubungan kerjasama yang saling menguntungkan antara kedua negara di bidang pertahanan terutama kerjasama pengadaan Alat Utama Sistem Senjata (Alutsista).


Semoga

Maju Terus Indonesia

Saturday, 27 April 2013

E-Learning Untuk Ilmuwan Nuklir Pemula

Bangsa ini harus memiliki Ilmu Pengetahuan Nuklir yang Kuat 


Mari Kita Melaksanakan pendidikan, penelitian, pengembangan dan penerapan energi nuklir


Segenap kegiatan pegembangan IPTEK nuklir dilandasi nilai-nilai :
  • Visionary, Innovative, Excellent dan Accountable
  • Kejujuran, Kedisiplinan, Keterbukaan, Tanggungjawab, Kreatif dan Kesetiakawanan

Is your country considering nuclear power? 

The IAEA is here to help! 

We have created an interactive e-learning series explaining the IAEA’s Milestones Approach to introducing a nuclear power programme. 

This approach is based on three phases and covers the 19 infrastructure issues that need to be addressed, and brings decades of expertise to life. 

Both newcomers and those expanding their nuclear power programmes may benefit from the e-learning series.

Implementing a Nuclear Power Programme
is an introduction and overview of
nuclear power infrastructure development

Who benefits? 

The e-learning modules target a variety of stakeholders in Member States interested in or embarking on a nuclear power programme:

Decision makers, advisers and senior managers in governmental organizations, regulatory bodies, utilities and industries, as well as donors, suppliers and other related bodies.

Students, academics and researchers in the nuclear field may better understand the "big picture" of developing nuclear power programmes.

Those involved in expanding existing nuclear power programmes may also find the modules a valuable resource.

Whatever your role or interest in your country's nuclear power programme, this e-learning will further you knowledge and understanding.


 Developing a Human Resource Strategy
focuses on human resources management,
a crucial element of a nuclear power programme

Source:

International Atomic Energy Agency

http://nuclearscienceandtechnology.blogspot.com/
Nuclear Science & Technology School Nuklir Power sebagai pemercepat Kesejahteraan Umat Manusia.