Wednesday, 25 March 2009

Indonesian Space Sciences & Technology School


Sekolah Teknologi Antariksa & Kedirgantaraan Indonesia
(IS2TS Indonesian Space Sciences & Technology School)

Vision

"Experiments In The Cosmos, Because Our Laboratory is Universe"

Mission

1. Menjadi Sekolah Sains Teknologi Cyber Keantariksaan dan Kedirgantaraan Terdepan di Indonesia
2. Melahirkan Generasi Impian yang Selalu Bertafakur, Bertadabur dan Bertasayakur terhadap Keseimbangan Semesta yang Telah Tercipta

Program IS2TS: 1 Tahun Mendatang.



1. Penelitian Pendaratan Manusia ke Bulan

Left to right: Armstrong, Collins, Aldrin

2. Penelitian Aerospace Engineering (List of aerospace engineering topics)
3. Pengenalan terhadap anak usia sekolah dasar dan menengah.
4. Mengadakan Ivent-ivent kecil di kota kelahiran para anggota.
5. Mendukung olimpiade-olimpiade ilmiah
6. Mempelajari Industri Keluarangkasaan
7. Memperkenalkan Wisata Luar Angkasa Space tourism (Aerospace BUSINESS)
8. Merenungi Kebesaran Penciptaan

Focus:

1. Academic

AeroAstro Undergraduate Education
a. Objectives & Outcomes
b. Degrees
c. Curriculum & Requirements
d. Freshman Year
e. Undergraduate Research Opportunities Program
f. Internships: The AeroAstro internship program is a strong alliance with aerospace industry that ties students’ campus learning to a work experience
2. Innovation, Research and Development

Research Labs & Facilities from MIT





INSPIRE
(Indonesian Nano-Satellite Platform Initiative for Research and Education)



3. Pengabdian Pada Masyarakat


1. Pengembangan Club Astro Fisika di Daerah-daerah;

a. Kota Cimahi

Team Olimpiade Astronomi dan Fisika Kota Cimahi

Pemimpin Project:

Angga : SMAN 2 Cimahi
Bela : SMPN 1 Cimahi

b. Kabupaten Bandung Barat

Team Olimpiade Astronomi dan Fisika Kabupaten Bandung Barat

Pemimpin Project:

Agan Septian Nugraha : SMA Lab School Universitas Pendidikan Indonesia

c. Kota Banjar Selamat Datang di Tim Olimpiade Astronomi Kami

Pemimpin Project:

Anton Timur J. (Institute Teknologi Bandung)


d. Pangandaran

Team Olimpiade Astronomi dan Fisika Kabupaten Pangandaran

Pemimpin Project:

Widia Prima M. (STT Garut)


e. Garut Tim Olimpiade Kab. Garut
Pemimpin Project:

Iqbal Robiyana (Pendidikan Fisika, FPMIPA UPI)


f. Tasikmalaya Tim Olimpiade Tasik
Pemimpin Project:


g. Ciamis

Team Olimpiade Astronomi dan Fisika Kabupaten Ciamis

Pemimpin Project:

1. Arip Nurahman (Pendidikan Fisika, FPMIPA UPI)

2. Bambang Achdiyat (Pendidikan Fisika, FPMIPA UPI)


h. Cirebon



Pemimpin Project:

Cecepulah


i. Provinsi Banten

Team Olimpiade Astronomi dan Fisika Daerah Banten

Pemimpin Project:

1. Deden Anugrah H. (Pendidikan Fisika, FPMIPA UPI)
2. Rizkiyana Putra M. (Pendidikan Fisika, FPMIPA UPI)

j. Team Olimpiade Astronomi dan Fisika Daerah Karawang

Pemimpin Project: Angga Fuja Widiana

K. Tim Olimpiade Kab. Kuningan

Pemimpin Project: Yoga dan Purwanto

Oraganisasi Berbasis Masyarakat


1. Indonesia Space Flight Society (MASYARAKAT PENERBANGAN ANTARIKSA INDONESIA)

2. Indonesia Space Scientist Society (MASYARAKAT ILMUWAN ANTARIKSA INDONESIA)

3. Indonesia Space Exploration Society (MASYARAKAT PENGEKSPLORASI ANTARIKSA INDONESIA)

Pusat Industri Keantariksaan Masa Depan di Indonesia


1. Indonesia Spacecraf Engineering

2. Indonesian Space Technology Innovation Research & Development

3. Indonesia Aerospace Engineering School









Space Tourism and Tourists





FIRST STEP TO NOBEL PRIZE IN PHYSICS


Central for Research and Development
for Winning Nobel Prize in Physics at Indonesia

International Competition for High School (Lyceum)
Students in Research Projects in Physics


The First Step adalah suatu kompetisi riset ilmiah tahunan dalam bidang Fisika bagi para remaja diseluruh dunia. Ide pembentukan The First Step ini berasal dari Waldemar Gorzkowski seorang guru besar Fisika di Institute of Physics, Polish Academy of Sciences. Sekitar 20 tahun yang lalu Gorzkowski bekerja sama dengan Polish Children’s Fund memulai suatu workshop dalam riset Fisika. Dalam workshop ini siswa-siswa SMA melakukan penelitian bersama dengan para peneliti senior. Ternyata hasil penelitian itu demikian baiknya bahkan beberapa makalah dapat dipublikasikan dalam jurnal-jurnal fisika yang cukup bergengsi. Hasil ini ditambah dengan penemuan bahwa beberapa anak SMA mempunyai semangat meneliti yang tinggi, mendorong. Gorzkowski untuk membuat kompetisi riset untuk anak-anak SMA se Polandia pada tahun 1991/1992. Tujuannya adalah untuk menghargai usaha para murid SMA ini dalam meneliti serta memberikan kesempatan untuk membandingkan hasil penelitian mereka dengan penelitian siswa-siswa lain. Dalam kompetisi ini terkumpul 59 makalah yang ternyata levelnya cukup tinggi. Kemudian dari makalah-makalah ini dipilih 7 pemenang utama (First Prize) dan 19 honorable mentions. Honorable mentions dibagi dalam dua kategori: makalah riset dan kontribusi. Hadiah untuk para pemenang ini adalah berupa riset di Institute of Physics selama 2 minggu.
Sambutan dan hasil kompetisi nasional yang begitu positif ini mendorong Gorzkowski untuk mendirikan kompetisi sejenis tetapi untuk level internasional, lahirlah The First Step to Nobel Prize in Physics Competition di tahun 1992/1993.
History of the
First Step to Nobel Prize in Physics
Introduction
About 15 years ago the Institute of Physics, Polish Academy of Sciences, in co-operation with the Polish Children's Fund started to organise the so-called Research Workshop on Physics. During the Workshop pupils selected by the Fund partook in various "adult" research projects being carried out at the Institute. Some results obtained by the Workshop participants were extremely valuable and were later published [e.g.: K. Giaro, et al., A Correct Description of the Interaction between a Magnetic Moment and Its Image, Physica C, 168 (1990) 479 - 481; M. Braun, et al., Vibration Frequency and Height of a Magnet Levitating over a Type-II Superconductor, Physica C, 171 (1990) 537 - 542].
National Competition
Many scientists employed in the Institute of Physics are involved in both national and international Physics Olympiads since their beginnings and are in permanent touch with pupils and teachers. During our time with the pupils at both the Workshop and the Physics Olympiads we discovered that some of the high school pupils tried to carry out physical research by themselves - at schools, in some laboratories and even at home. It was then - under permission of the Authorities of the Institute of Physics - that I decided to organise the National Competition in Research Projects on Physics for High School Students. The aims of the competition were obvious. We wanted to recognise pupils’ efforts and provide them with an opportunity to compare their own achievements with those of their colleagues. The first competition of this type started in 1991/2. The number of papers submitted was 59 with many of them being of a surprisingly high level. In this first competition 7 papers won prizes and 19 received honourable mentions. Given the difficulty in comparing papers on, for example, chaotic behaviour with the papers on theory of networks, all prizes were deemed to be of equivalent value. The honourable mentions were divided into two categories: research papers and contributions. Similarly, inside each category the honourable mentions were considered equivalent as well. The prizes in our competition were not typical. Instead of buying items for our winners, such as cameras, computers, sport equipment, etc., we decided to invite them to our Institute for a two-week long research stay. It was felt that in the case of those whose main hobby is physics such a prize is more valuable and more instructive than anything else.
Since the first competition was a success we decided to repeat the national competition every year. The second competition was organised in 1992/3. Its level was also very high, perhaps even higher than the previous year. The number of participants and winners increased also: 81 papers, 8 winners, 21 honourable mentions in two categories.



Body Of Knowledge

Pendidikan Astro Fisika dimulai dengan memperkenalkan berbagai fenomena yang dapat diamati di langit sebagai fenomena ilmiah yang ingin dijelaskan secara ilmiah pula. Tulang belakang dalam perolehan deskripsi ilmiah ini adalah fisika. Diyakini bahwa kaidah-kaidah fisika bersifat universal; berlaku di Bumi dan lingkungan-dekatnya dan juga di seluruh alam raya. Karena itu, fisika adalah elemen ilmu dasar yang esensial dalam astronomi. Diperlukan pula pemahaman yang baik tentang konsep dan perangkat matematika untuk memahami aliran logika dalam formulasi kaidah-kaidah tadi dan mendukungnya dalam teknik aplikasinya. Komponen lain yang juga sangat penting dalam sains adalah pekerjaan laboratorium. Ini diperlukan dalam proses pemahaman konsep atau kaidah ilmiah maupun dalam pembentukan ketrampilan dan kreativitas, serta aspek lain dalam metoda ilmiah, yaitu motivasi dan keingintahuan, pelaporan, dan sikap bertanggung jawab dan kritis.

Komponen fisika fundamental yang harus dikuasai, baik formulasi teoritik (formal dan umum) maupun aplikasinya, adalah sebagai berikut:
  1. Mekanika: pengertian gerak, kecepatan, momentum, gaya, energi, sistem referensi, orbit, sistem benda, kestabilan
  2. Termodinamika: pengertian sifat materi, panas, tekanan, entropi, energi, distribusi materi dan energi, sifat statistik materi dan radiasi
  3. Elektromagnetik: pengertian sifat dan gejala kelistrikan dan kemagnetan , elektrostatika, elektrodinamika, hamburan, gelombang, perambatan, radiasi
  4. Fisika Kuantum: pengertian kuantum, observables, operator kuantum, prinsip ketidakpastian, deskripsi keadaan, evolusi keadaan, tingkat energi kuantum, hamburan

Komponen matematika fundamental yang harus dikuasai adalah kalkulus, geometri, aljabar linier, operasi matriks, persamaan diferensial, fungsi khusus, transformasi integral, dan berbagai komponen dalam metoda matematika untuk permasalahan fisika. Komponen penting lain yang diberikan adalah statistika dan penggunaan komputer (algoritma dan teknik pemrograman, metoda numerik, dan lain sebagainya) yang relevan untuk keperluan sains. Agak berbeda dari penyampaian materi secara klasik, dalam kurikulum astronomi ini motivasi astrofisika sangat ditonjolkan dalam penyampaian materi utama fisika dan matematika seperti disebutkan di atas.

Berbagai komponen fisika dan matematika fundamental yang telah disebutkan di atas, berikut perangkat statistik dan komputasi, dituangkan ke dalam adonan besar materi astronomi dan astrofisikanya sebagai berikut:
  1. Waktu dan astronomi posisional: sistem koordinat, sistem waktu dan penghitungannya, penentuan lokasi dan waktu pemunculan objek langit, koreksi posisi dan waktu.
  2. Astrofisika: Konsep-konsep mendasar tentang astronomi dan astrofisika; metoda pengukuran dan kuantisasi dalam observasi astronomis; hubungan antara besaran teramati dan besaran intrinsik, mengenali perilaku dasar bahan penyusun objek astronomis (gas materi, debu, foton), dan proses fisis yang berasosiasi dengan observables, seperti temperatur, warna, dan kecerlangan.
  3. Proses Astrofisika: pemakaian konsep fisika (mekanika, termodinamika, elektromagnetik, fisika kuantum, dsb) dalam proses astronomis, termasuk yang berada dalam kondisi ekstrim, proses pembangkitan radiasi, emisi, absorpsi, pembentukan spektrum kontinu dan garis, akresi massa, gerak sistem benda, orbit, aspek komparasi teori dan pengamatan, berbagai koreksi, kalibrasi,
  4. Tata Surya: mengenal berbagai objek dalam Tata Surya, proses-proses fisis dalam Tata Surya, matahari sebagai sumber radiasi dan pengatur gerak utama, planet dan satelit, objek-objek kecil dalam Tata Surya, wawasan evolusi Tata Surya, wawasan planet ekstrasolar, aspek kondisi posibilitas kehidupan, orbit satelit buatan
  5. Fisika Bintang: berbagai proses utama di dalam dan atmosfer bintang: pembangkitan energi nuklir, aspek kuantum pada radiasi, aspek hantaran radiasi, dan aspek evolusinya, klasifikasi bintang, karakter bintang
  6. Fisika Galaksi: berbagai proses fisis di dalam galaksi, distribusi dan gerak bintang, distribusi, komposisi, dan gerak materi antar bintang, Galaksi Bima Sakti (posisi dan gerak matahari, lingkungan matahari, rotasi galaksi, penentuan ukuran dan massa galaksi, penentuan posisi pusat galaksi, dsb), property umum galaksi, seperti morfologi, laju pembentukan bintang, kondisi lingkungan, dan evolusi galaksi
  7. Kosmologi: mempelajari alam semesta secara keseluruhan, baik struktur maupun evolusinya melalui telaah geometri dan fisis; konsep ruang-waktu, Teori Gravitasi Enstein, kondisi relativistik, kerangka kerja pemodelan alam semesta, identifikasi hasil pengamatan kosmologis dalam bentuk dan struktur sifat global alam semesta maupun proses terinci dalam sejarah pembentukan strukturnya. (as. ITB).

Bahan-bahan kuliah di bawah ini sebagian besar didanai dari proyek hibah PHK-A2. Silakan diakses. (Sumber Astronomi ITB)


Silakan dimanfaatkan beberapa taut berikut yang juga disusun oleh staf:

Di Asia, ditelaah model dari Kyoto University dan University of Tokyo (Jepang) dan Interuniversity Center for Astronomy and Astrophysics (Pune, India). Di Australia, University of Melbourne. Eropa: Cambridge University (Inggris), Leiden dan Utrecht (Belanda), Padua (Italia). Amerika Serikat: MIT, Princeton University, Cornell University, UC Berkeley, University of Arizona, University of Texas at Austin. Juga ditinjau model kurikulum astrnomi di negara berkembang yang memiliki program astronomi, yaitu Universitas National Mexico. Studi banding ini kemudian disesuaikan dengan kebutuhan maupun dengan sumberdaya yang ada.

(Semoga bermanfaat)

Thursday, 19 March 2009

Merancang Peradaban Bersekala Galaktika


Indonesia Space Flight Society

(Masyarakat Antariksa Indonesia)

Vision

Melahirkan Generasi Impian yang Selalu Bertafakur, Bertadabur dan Bertasayakur terhadap Keseimbangan Semesta yang Telah Tercipta


"SELAMAT DATANG DI ERA PENJELAJAHAN MILENIUM KE-3"

~Voyager of Third Millennium~

Membangun dan Meningkatkan Pendidikan Moralitas dan Spiritualisme Kemanusiaan Antariksa
ISSTS


1. 50 Tahun Pertama, Meningkatkan dan Dikembangkannya Advanced Technology Teknologi Tinggi

a. Giant Robotics
b. Middle Robotics
c. Nano Robotics
d. Super Space Ship (Menerbangkan Kapal-kapal Induk Raksasa)
e. Nuclear Transmutation Technology
f. Astrophysics Engineering
g. Astrobiochemistry
h. Food Technology
i. Ocean City
j. Space Clothes


Profesor Michio Kaku, fisikawan Amerika keturunan Jepang yang sangat berpengaruh dan dikenal luas. Ia menekankan pentingnya akselerasi ilmu pengetahuan manusia, termasuk eksplorasi luar angkasa, untuk menciptakan peradaban baru umat manusia yang lebih tinggi.

Nikolai Kardashev, ilmuwan Rusia, membagi kemajuan teknologis peradaban menjadi 3 tingkat, Tipe 1, 2, dan 3 (Kardashev Scale). Tapi Michio Kaku masih menempatkan peradaban Bumi sebagai Tipe 0. Ini penjelasannya.

Peradaban Planet Tipe : 0

Peradaban di sebuah planet pada level ini berada di titik kritis. Banyak masalah yang dihadapi, seperti keterbatasan sumberdaya, keterbatasan sumber energi (yang terbatas hanya dari planet itu sendiri - minyak bumi), krisis ledakan penduduk, kerusakan ekologis, dan seterusnya.
Keterbatasan sumberdaya ini juga menyebabkan banyak masalah, dari kemiskinan sampai perang dan terorisme (efek dari “Uranium Barrier”). Peradaban level ini juga akan kesulitan menghadapi kemungkinan bahaya dari luar bumi, seperti asteroid, atau ledakan supernova (bahkan mungkin juga serangan dari “aliens”/ peradaban yang lebih maju).

Peradaban Planet Tipe : 1

Ini level peradaban yang lebih ideal. Disini peradaban itu sudah mampu mengendalikan planetnya. Dengan teknologi yang dimiliki mereka sepenuhnya mampu mengendalikan lautan, gunung api, bahkan cuaca, dan sudah menjadikannya sebagai sumber energi utama.
Mereka bisa mencegah gempa bumi, ledakan gunung berapi, atau ombak berbahaya dari laut. Tidak ada lagi ancaman global warming atau datangnya jaman es baru. Permasalahan asteroid juga sudah bisa diatasi. Planetnya sudah menjadi tempat aman untuk ditinggali. Mereka juga bisa membangun kota-kota besar di tengah laut, tidak terbatas di darat saja. Di masa ini perjalanan luar angkasa sudah menjadi sesuatu yang biasa. Kolonisasi planet-planet terdekat mulai dilakukan.

Peradaban Planet Tipe : 2 (Stellar Civilization)
Mereka sudah tidak lagi memakai energi dari planetnya sendiri, tapi sudah mampu sepenuhnya mengeksploitasi energi raksasa dari Bintang yang ada di galaksi itu, Panas Matahari. Di saat ini peradaban itu sudah melakukan kolonisasi sampai ke planet-planet yang lebih jauh. Saat bumi terancam oleh sesuatu hal, bahkan bila akan terjadi Supernova, mereka sudah bisa mencegahnya atau bermigrasi ke planet lain.

Peradaban Planet Tipe : 3 (Galactic Civilization)
Di tahap ini sebuah peradaban tidak lagi hanya memanfaatkan matahari yang ada di galaksinya sendiri, tapi sudah memanfaatkan energi dari banyak matahari yang ada di banyak galaksi.

Level Kemajuan Teknologi Manusia, dan Perdamaian Bagi Seluruh Bumi

Kemajuan teknologi, pada akhirnya akan memungkinkan umat manusia mencapai level Keberadaan yang lebih tinggi, Tipe 1, 2, dan 3. Manusia akan mampu menghasilkan sumber energi yang sangat melimpah, dan jauh lebih aman bagi bumi. Hasilnya, kita nanti tidak perlu lagi berebut sumberdaya, tidak perlu lagi berperang. Kita juga tidak lagi perlu khawatir tentang bencana lingkungan yang sekarang mengancam bumi. Bumi, akan berubah menjadi tempat tinggal yang nyaman, dan damai. PEACE ON EARTH!

Teknologi angkasa luar, juga akan membantu manusia menemukan berbagai kemungkinan baru, yang bisa membuat hidup manusia lebih baik. Teknologi ini juga memungkinkan manusia menemukan peradaban lain yang lebih maju, yang mungkin bisa membantu manusia mengakselerasikan level peradabannya.

Bila manusia sudah mampu mencapai level 1, peradaban Bumi akan mengalami masa kedamaian sejati, kemakmuran yang tidak pernah terjadi sebelumnya dalam sejarah, dan lepas dari bahaya yang harus dihadapi peradaban Tipe 0.

Michio Kaku percaya, bahwa bila seluruh umat manusia bersatu dan benar-benar berusaha, sebuah Planet Bumi yang baru akan menjadi kenyataan dalam waktu 100 tahun.



Note : Semua negara maju di dunia, termasuk China dan India, sudah melakukan upaya-upaya riil untuk mengembangkan teknologi unggul, termasuk teknologi eksplorasi luar angkasa.
Sumber: Imperium Indonesia
Membangun Peradaban Tingkat Tinggi
1. Kalau kita pelajari semua sejarah negara-negara termaju dunia sekarang, para Superpowers, dari Amerika, Jepang, Imperium Inggris yang menguasai seluruh dunia, Jerman (dari masa sebelum Perang Dunia II sampai sekarang), juga Singapura (negara kecil tersukses di dunia), dapatkah kita juga menjadi, Negara Termaju di Dunia ?

2. Kalau kita mempelajari semua peradaban terbesar dalam sejarah dunia, dari jaman keemasan Yunani-Romawi, Cina, peradaban Islam abad 8-13, dan Renaisans Eropa, mungkinkah kita bisa menciptakan, Peradaban Besar Baru ?

3. Seandainya kita gabungkan semua keunggulan mereka, keunggulan dari semua bangsa terunggul itu, mungkinkah kita menciptakan sebuah bangsa yang bahkan jauh lebih unggul lagi ?
A Super Superpower, A Super Civilization ?

Bagaimana caranya ?

50 Tahun Ke-dua, Berkembangnya Peradaban Tata Surya
a. Eksplorasi dan Pembangunan Peradaban di Bulan
b. Eksplorasi dan Pembangunan Peradaban di Mars
c. Pengembangan Koloni Luar Angkasa (Masyarakat Statsiun-statsiun Luar Angkasa)

dan 100 tahun Berikutnya adalah, Era Penjelajahan Antar Bintang., Semoga Amin!.

Wednesday, 18 March 2009

Pusat Pengaplikasian Sains dan Teknologi Astro Fisika Star Trek




"Today's science fiction is often tomorrow's science fact. The physics that underlies Star Trek is surely worth investigating. To confine our attention to terrestrial matters would be to limit the human spirit."
– from the foreword by Stephen Hawking~


The Physics of Star Trek is a 1995 nonfiction book by Arizona State University professor Lawrence M. Krauss. It discusses the physics involved in various concepts and objects described in the Star Trek universe. He investigates the possibility of such things as inertial dampeners and warp drive, and whether physics as we know it would allow such inventions. He also discusses time travellight speed, pure energy beings, wormholes, and other concepts. The book includes a foreword by astrophysicist Stephen Hawking.
The Physics of Star Trek was met with generally positive reviews. It became a national bestseller and sold more than 200,000 copies in the United States. As of 1998, it was being translated into 13 different languages. It was also the basis of a BBC television production. 
Krauss got the idea for writing the book from his publisher, who initially suggested it as a joke. Krauss dismissed the idea but later thought that using Star Trek might get people interested in real physics. 
The hardcover edition was published in November 1995, and a paperback edition followed in September 1996. Krauss's next book, Beyond Star Trek: Physics from Alien Invasions to the End of Time, was published in 1997.



Star Trek technologies


Further reading


See also


Edited By:

Arip Nurahman
Department of Physics, Indonesia University of Education
&
Follower Open Course Ware at MIT-Harvard University, Cambridge. USA.

Sunday, 15 March 2009

Earth Math Educator Guide

Audience: Educators
Grades: 6-12




This book provides many of the quantitative skills your students will need to make sense out of climate change. To think quantitatively about climate change, students must become fluent in working with Celsius and Fahrenheit temperature scales. Students also should understand the difference between watts, kilowatts and kilowatt hours; tons and gigatons; and BTUs and tons of carbon dioxide. All of these units appear in news stories about climate change and human impacts on the environment. The problems in this guide include basic mathematics, algebra, geometry and some trigonometric functions. The one-page assignments are accompanied by one-page answer keys.

Earth Math  [5MB PDF file] Source: NASA

Thursday, 12 March 2009

Nobel Fisika Indonesia

Central for Research and Development for Winning


Nobel Prize in Physics at Indonesia

"Dalam pengakuan atas jasa besarnya dalam teori dan eksperimen menginvestigasi konduksi listrik oleh gas".

J. J. Thomson

Born 18 December 1856
Cheetham Hill, Manchester, UK
Died 30 August 1940(1940-08-30) (aged 83)
Cambridge, UK
Nationality British
Fields Physics
Institutions Cambridge University
Alma mater University of Manchester
University of Cambridge
Academic advisors John Strutt (Rayleigh)
Edward John Routh
Notable students Charles Glover Barkla
Charles T. R. Wilson
Ernest Rutherford
Francis William Aston
John Townsend
J. Robert Oppenheimer
Owen Richardson
William Henry Bragg
H. Stanley Allen
John Zeleny
Daniel Frost Comstock
Max Born
T. H. Laby
Paul Langevin
Balthasar van der Pol
Geoffrey Ingram Taylor
Known for Plum pudding model
Discovery of electron
Discovery of isotopes
Mass spectrometer invention
First m/e measurement
Proposed first waveguide
Thomson scattering
Thomson problem
Coining term 'delta ray'
Coining term 'epsilon radiation'
Thomson (unit)
Notable awards Nobel Prize for Physics (1906)
Signature
Notes
Thomson is the father of Nobel laureate George Paget Thomson.

Joseph John Thomson (1856-1940) ialah seorang ilmuwan yang lahir di Cheetham Hill, di mana ia diangkat sebagai profesor fisika eksperimental sejak 1884. Penelitiannya membuahkan penemuan elektron. Thomson mengetahui bahwa gas mampu menghantar listrik. Ia menjadi perintis ilmu fisika nuklir. Thomson memenangkan Hadiah Nobel Fisika pada tahun 1906.

Biografi

Joseph John Thomson lahir di Creetham Hill, pinggiran kota Manchester pada tanggal 18 Desember 1856. Dia mendaftar di Owens College, Manchester tahun 1870, dan tahun 1876 mendaftar di Trinity College, Cambridge sebagai pelajar biasa. Dia menjadi anggota Trinity College tahun 1880, ketika dia menjadi penerima Penghargaan Wrangler dan Smith (ke-2). Dia tetap menjadi anggota Trinity College seumur hidupnya. Dia menjadi penceramah tahun 1883, dan menjadi profesor tahun 1918. Dia adalah professor fisika eksperimental di laboratorium Cavendish, Cambridge, dimana dia menggantikan John Strutt, 3rd Baron Rayleigh, dari tahun 1884 sampai tahun 1918 dan menjadi profesor fisika terhormat di Cambridge dan Royal Institution, London.

Thomson baru-baru itu tertarik pada struktur atom yang direfleksikan dalam bukunya, yang berjudul Treatise on the Motion of Vortex Rings yang membuatnya memenangkan Adams Prize tahun 1884. Bukunya yang berjudul Application of Dynamics to Physics and Chemistry terbit tahun 1886, dan di tahun 1892 dia menerbitkan buku berjudul Notes on Recent Researches in Electricity and Magnetism. Pekerjaan belakangan ini membungkus hasil-hasil yang didapat berikutnya sampai pada kemunculan risalat James Clerk Maxwell yang terkenal dan sering disebut sebagai jilid ketiga Maxwell. Thomson bekerja sama dengan Professor J.H. Poynting untuk menulis buku fisika dalam empat jilid, berjudul Properties of Matter dan tahun 1895, dia menghasilkan buku Elements of the Mathematical Theory of Electricity and Magnetism, edisi kelima yang terbit di tahun 1921.

Tahun 1896, Thomson mengunjungi Amerika Serikat untuk memberikan kursus dari empat ceramah, yang meringkaskan penelitian-penelitian barunya di Universitas Princeton. Ceramahnya ini berikutnya diterbitkan dengan judul Discharge of Electricity through Gases (1897). Sekembalinya dari Amerika Serikat, dia memperoleh pekerjaan paling brilian dalam hidupnya, yaitu mempelajari memuncaknya sinar katode pada penemuan elektron, yang dibicarakan selama kursus pada ceramah malamnya sampai Royal Instution pada hari Jumat, 30 April 1897. Bukunya Conduction of Electricity through Gases terbit tahun 1903, diceritakan oleh Lord Rayleigh sebagai sebuah tinjauan atas "hari-hari hebatnya di Laboratorium Cavendish". Edisi berikutnya, ditulis dengan kolaborasi dengan anaknya, George, dalam dua jilid (1928 dan 1933).

Thomson kembali ke Amerika tahun 1904, untuk menyampaikan enam ceramahnya tentang kelistrikan dan zat di Universitas Yale. Ceramah itu memuat beberapa pernyataan penting tentang struktur atom. Dia menemukan sebuah metode untuk memisahkan jenis atom-atom dan molekul-molekul yang berbeda, dengan menggunakan sinar positif, sebuah ide yang dikembangkan oleh Francis Aston, Dempster dan lainnya, yang menuju pada banyak penemuan isotop. Dan lagi, untuk itu hanya disebutkan dan dia menulis buku-buku, seperti The Structure of Light (1907), The Corpuscular Theory of Matter (1907), Rays of Positive Electricity (1913), The Electron in Chemistry (1923) dan otobiografinya, dan buku Recollections and Reflections (1936), di antara banyak terbitan lainnya. Thomson, seorang penerima perintah atas jasa, dilantik tahun 1908.

Dia dipilih menjadi anggota Royal Society tahun 1884 dan menjadi presiden selama 1916-1920; dia memperoleh medali Royal and Hughes pada tahun 1894 dan 1902, dan memperoleh Medali Copley tahun 1914. Dia dianugerahi Medali Hodgkins (Smithsonian Institute, Washington) tahun 1902; Medali Franklin dan Medali Scott (Philadelphia), 1923; Medali Mascart (Paris), 1927; Medali Dalton (Manchester), 1931; dan Medali Faraday (Institute of Civil Engineers) pada tahun 1938. Dia adalah Presiden British Association tahun 1909 (dan dari bagian A tahun 1896 dan 1931) dan dia memegang gelar Doktor Kehormatan dari Universitas Oxford, Dublin, London, Victoria, Columbia, Cambridge, Durham, Birmingham, Göttingen, Leeds, Oslo, Sorbonne, Edinburgh, Reading, Princeton, Glasgow, Johns Hopkins, Aberdeen, Kraków, dan Philadelphia.

Pada tahun 1890, dia menikahi Rose Elisabeth, putir Sir George E. Paget, K.C.B. Mereka dianugerahi seorang putera, sekarang Sir George Paget Thomson, profesor emeritus untuk fisika di Universitas London, yang juga dianugerahi Nobel Fisika tahun 1937, dan seorang puteri.
J. J. Thomson meninggal dunia pada tanggal 30 Agustus 1940.

Nobel Lecture

Nobel Lecture, December 11, 1906

Carriers of Negative Electricity


The Lecture in Text Format
Pdf 44 kB
Copyright © The Nobel Foundation 1906
From Nobel Lectures, Physics 1901-1921, Elsevier Publishing Company, Amsterdam, 1967
In order to read the text you need Acrobat Reader.

Award Ceremony Speech

Presentation Speech by Professor J.P. Klason, President of the Royal Swedish Academy of Sciences, on December 10, 1906
Your Majesty, Your Royal Highnesses, Ladies and Gentlemen.

Every day that passes witnesses electricity obtaining an ever-increasing importance in practical life. The conceptions, which a few decades ago were the subject of investigation in the quiet studies or laboratories of sundry learned men, have by this time become the property of the public at large, who will soon be as familiar with them as with their ordinary weights and measures. Still greater however are the revolutions brought about by electricians' labours in the sphere of science. Immediately after Örsted's epochmaking discovery of the influence of the electric current on a magnetic needle (1820), Ampere, the ingenious French investigator, promulgated a theory explaining magnetic phenomena as results of electrical agencies.


The investigations of Maxwell, the brilliantly gifted Scotch physicist (1873), were still more far-reaching in their effect, for by them the phenomenon of light was proved to be dependent upon electromagnetic undulatory movements in the ether. There is reason to believe that the grand discoveries of the last few years respecting the discharge of electricity through gases will prove to be of equally great, or perhaps still greater, importance, throwing as they do a great deal of light upon our conception of matter. In this domain Professor J.J. Thomson of Cambridge, this year's Prize-winner in Physics, has made most valuable contributions through his investigations and researches, which he has assiduously pursued for many years past.

By Faraday's great discovery in the year 1834 it had been shown that every atom carries an electric charge as large as that of the atom of hydrogen gas, or else a simple multiple of it corresponding to the chemical valency of the atom. It was, then, natural to speak, with the immortal Helmholtz, of an elementary charge or, as it is also called, an atom of electricity, as the quantity of electricity inherent in an atom of hydrogen gas in its chemical combinations.

Faraday's law may be expressed thus, that a gram of hydrogen, or a quantity equivalent thereto of some other chemical element, carries an electric charge of 28,950 x 1010 electrostatic units. Now if we only knew how many hydrogen atoms there are in a gram, we could calculate how large a charge there is in every hydrogen atom. The kinetic gas theory, a field of investigation as popular as any among the scientists of the century recently ended, is based upon the assumption that the gases consist of freely moving molecules, the impact of which on the walls of the encompassing vessel is recognizable as the pressure of the gas. From this the velocity of the gas molecules could be calculated with great accuracy.


From the velocity with which one gas diffuses in another, and from other closely allied phenomena, it was further possible to calculate the volume of space occupied by the molecules, and by that means the investigator was enabled to form an idea of the mass of the molecules and consequently of the number of molecules to be found in one gram of a chemical substance, such as, e.g. hydrogen. The figures thus obtained could not however lay claim to any great amount of accuracy and were regarded by many scientists as purely conjectural. If it had been possible to calculate the number of molecules in a drop of water by the aid of an exceedingly powerful microscope, the case would of course have been quite otherwise.

But there was not the remotest hope of the investigator ever being successful in doing that, and thus the existence of the molecules was regarded as very problematical. If from the figures quoted by the champions of the kinetic gas-theory as the most probable ones for the sizes of molecules and atoms we calculate how large a quantity of electricity is carried by one hydrogen atom, we arrive at the conclusion that the atom charge lies between 1,3 X 10-10 and 6,1 X 10-10 electrostatic units.

What no one regarded as probable has however been achieved by J.J. Thomson by devious methods. Richard von Helmholtz found out, as long ago as 1887, that electrically charged small particles possess the remarkable property of condensing steam around them. J.J. Thomson and his pupil C.T.R. Wilson took up the study of this phenomenon. By the aid of Röntgen rays they procured some electrically charged small particles in air.

Thomson assumes that each of those particles carries an electrical unit charge. By electrical measurements he was able to determine how great the electric charge was in a given quantity of air. Then, by means of a sudden expansion of the air, which was saturated with steam, he effected a condensation of the steam on the electrically charged small particles, the size of which he could calculate from the velocity with which they sank. Now as he knew the amount of water condensed and the size of each drop, it was not difficult to calculate the number of drops.

That number was the same as that of the electrically charged small particles. Having before determined the total quantity of electricity in the vessel, he could easily reckon out what quantity there was in each drop or, previously, in every small particle, that is to say the atomic charge. That was thus found to be 3,4 x 10 -10 electrostatic units. This value is very close to the mean of the values previously obtained by the kinetic gas-theory, rendering the correctness of these different measurements and the accuracy of the reasoning employed in their determination in a very high degree probable.

Now, even if Thomson has not actually beheld the atoms, he has nevertheless achieved work commensurable therewith, by having directly observed the quantity of electricity carried by each atom. By the aid of this observation the number has been determined of the molecules in a cubic centimetre of gas at a temperature of zero and under the pressure of one atmosphere; that is to say, there has been thereby calculated what is perhaps the most fundamental natural constant in the material world.

That number amounts to not less than forty trillions (40 x 1018 By means of a series of exceedingly ingenious experiments, Professor Thomson, aided by his numerous pupils, has determined the most important properties (such as mass and velocity under the influence of a given force), of these electrically charged small particles, which are produced in gases by various methods, e.g. by Röntgen rays, Becquerel rays, ultraviolet light, needle-point discharge and incandescent metals.

The most remarkable of these electrically charged small particles are those constituting the cathode rays in highly rarefied gases. These small particles are called electrons and have been made the object of very thorough-going researches on the part of a large number of investigators, foremost of whom are Lenard, last year's Nobel Prize winner in Physics, and J.J. Thomson. These small particles are to be met with also in the so-called ß-rays, emitted by certain radioactive substances. Assuming, on the basis of Thomson's above-mentioned work, that they carry the negative unit charge, we are led to the result that they possess about a thousand times less mass than the least atoms hitherto known, viz. the atoms of hydrogen gas.

On the other hand, the least positively charged small particles we know are, according to Thomson's, Wien's and other investigators' calculations, of the same order in mass as ordinary atoms. Now, seeing that all substances yet examined are capable of giving off negatively charged electrons, Thomson was led by these circumstances to assume that the negative charge in the electrons has a real existence, whereas the charge of the positive small particles arises from a neutral atom losing one or more negative electrons with their charges. Thomson has herewith given an actual physical import to the view put forward in 1747 by Benjamin Franklin that there is only one kind of electricity, a view eagerly championed too by Edlund. The actually existing electricity is negative electricity, according to Thomson.

As early as 1892 Thomson had shown that a charged body moving forward is thereby in possession of an electromagnetic energy, which produces the effect of the mass of the body being increased. From experiments carried out by Kaufmann regarding the velocity of ß-rays from radium, Thomson concluded that the negative electrons do not possess any real, but only an apparent, mass due to their electric charge.

It might now be considered reasonable to assume that all matter is built up of negative electrons, and that consequently mass in matter was apparent and really depended on the effect of electric forces. An experiment of very great interest has moreover been made in this direction by Thomson, but his investigations of most recent date in the present year (1906) seem to intimate that only about a thousandth part of the material is apparent and due to electric forces.

Professor Thomson. As you are aware, the Royal Swedish Academy of Sciences has decided to award you the Nobel Prize in Physics for this year.

I am at a loss to explain how it is, but somehow or another the contemplation of the work you have achieved has revived in my mind a passage in the famous essay on Socrates by Xenophon, a work which you too no doubt perused in your youth. The author tells us that every time conversation turned upon the elements of the Earth, Socrates would say "of these matters we know nothing". Will the sagacity which Socrates displayed in this answer and which has been approved by all ages up to and including our own, continue to be acknowledged as the conclusion of the whole matter? Who shall say? One thing we all know, and that is, that every great period of Natural Philosophy has evolved elements of its own, and furthermore we seem to feel as though we might be at the threshold of a new such period with new elements.

In the name and on behalf of our Academy I congratulate you upon having bestowed upon the world some of the main works which are enabling the natural philosopher of our time to take up new enquiries in new directions. You have thus been worthily treading in the footsteps of your great and renowned compatriots, Faraday and Maxwell, men who set to the world of science the highest and noblest examples.
From Nobel Lectures, Physics 1901-1921, Elsevier Publishing Company, Amsterdam, 1967

Copyright © The Nobel Foundation 1906


Ucapan Terima Kasih;
1. DEPDIKNAS Republik Indonesia
2. Kementrian Riset dan Teknologi Indonesia
3. Lembaga Ilmu Pengetahuan Indonesia (LIPI)
4. Akademi Ilmu Pengetahuan Indonesia
5. Tim Olimpiade Fisika Indonesia



Sumber:

Wikipedia

Nobel Prize Org.

Disusun Ulang Oleh;

Arip Nurahman

Pendidikan Fisika, FPMIPA. Universitas Pendidikan Indonesia
&
Follower Open Course Ware at MIT-Harvard University, Cambridge. USA.

Semoga Bermanfaat dan Terima Kasih