Thursday 18 October 2007

Indonesian Space Force Command

Indonesian Space Force Command  
(Komando Angkatan Antariksa Indonesia)




F-16 Fighting Falcon

F-16 Fighting Falcon "Viper"



F-16 Fighting Falcon
A USAF F-16C over Iraq
Role Multirole Fighter
National origin United States
Manufacturer General Dynamics
Lockheed Martin
First flight 2 February 1974
Introduction 17 August 1978
Status Active
Primary users United States Air Force
25 other users (see operators page)
Number built 4,450+[1]
Unit cost F-16A/B: US$14.6 million (1998 dollars)[2]
F-16C/D: US$18.8 million (1998 dollars)[2]
Variants General Dynamics F-16 VISTA
Developed into General Dynamics F-16XL
Mitsubishi F-2


The original F-16 was designed as a lightweight air-to-air day fighter. Air-to-ground responsibilities transformed the first production F-16s into multirole fighters. The empty weight of the Block 10 F-16A is 15,600 pounds. The empty weight of the Block 50 is 19,200 pounds. The A in F-16A refers to a Block 1 through 20 single-seat aircraft. The B in F-16B refers to the two-seat version. The letters C and D were substituted for A and B, respectively, beginning with Block 25. Block is an important term in tracing the F-16's evolution. Basically, a block is a numerical milestone. The block number increases whenever a new production configuration for the F-16 is established. Not all F-16s within a given block are the same. They fall into a number of block subsets called miniblocks. These sub-block sets are denoted by capital letters following the block number (Block 15S, for example). From Block 30/32 on, a major block designation ending in 0 signifies a General Electric engine; one ending in 2 signifies a Pratt & Whitney engine.
The F-16A, a single-seat model, first flew in December 1976. The first operational F-16A was delivered in January 1979 to the 388th Tactical Fighter Wing at Hill Air Force Base, Utah. The F-16B, a two-seat model, has tandem cockpits that are about the same size as the one in the A model. Its bubble canopy extends to cover the second cockpit. To make room for the second cockpit, the forward fuselage fuel tank and avionics growth space were reduced. During training, the forward cockpit is used by a student pilot with an instructor pilot in the rear cockpit.
  • Block 1 and Block 5 F-16s were manufactured through 1981 for USAF and for four European air forces. Most Blocks 1 and 5 aircraft were upgraded to a Block 10 standard in a program called Pacer Loft in 1982.
  • Block 10 aircraft (312 total) were built through 1980. The differences between these early F-16 versions are relatively minor.
  • Block 15 aircraft represent the most numerous version of the more than 3,600 F-16s manufactured to date. The transition from Block 10 to Block 15 resulted in two hardpoints added to the chin of the inlet. The larger horizontal tails, which grew in area by about thirty percent are the most noticeable difference between Block 15 and previous F-16 versions.
The F-16C and F-16D aircraft, which are the single- and two-place counterparts to the F-16A/B, incorporate the latest cockpit control and display technology. All F-16s delivered since November 1981 have built-in structural and wiring provisions and systems architecture that permit expansion of the multirole flexibility to perform precision strike, night attack and beyond-visual-range interception missions. All active units and many Air National Guard and Air Force Reserve units have converted to the F-16C/D, which is deployed in a number of Block variants.
  • Block 25 added the ability to carry AMRAAM to the F-16 as well as night/precision ground-attack capabilities, as well as an improved radar, the Westinghouse (now Northrop-Grumman) AN/APG-68, with increased range, better resolution, and more operating modes.
  • Block 30/32 added two new engines -- Block 30 designates a General Electric F110-GE-100 engine, and Block 32 designates a Pratt & Whitney F100-PW-220 engine. Block 30/32 can carry the AGM-45 Shrike and the AGM-88A HARM, and like the Block 25, it can carry the AGM-65 Maverick.
  • Block 40/42 - F-16CG/DG - gained capabilities for navigation and precision attack in all weather conditions and at night with the LANTIRN pods and more extensive air-to-ground loads, including the GBU-10, GBU-12, GBU-24 Paveway laser-guided bombs and the GBU-15. Block 40/42 production began in 1988 and ran through 1995. Currently, the Block 40s are being upgraded with several Block 50 systems: ALR-56M threat warning system, the ALE-47 advanced chaff/flare dispenser, an improved performance battery, and Falcon UP structural upgrade.
  • Block 50/52 Equipped with a Northrop Grumman APG-68(V)7 radar and a General Electric F110-GE-129 Increased Performance Engine, the aircraft are also capable of using the Lockheed Martin low-altitude navigation and targeting for night (LANTIRN) system. Technology enhancements include color multifunctional displays and programmable display generator, a new Modular Mission Computer, a Digital Terrain System, a new color video camera and color triple-deck video recorder to record the pilot's head-up display view, and an upgraded data transfer unit. In May 2000, the Air Force certitified Block 50/52 [aka Block 50 Plus] F-16s to carry the CBU-103/104/105 Wind-Corrected Munitions Dispenser, the AGM-154 Joint Stand-Off Weapon, the GBU-31/32 Joint Direct Attack Munition, and the Theater Airborne Reconnaissance System. Beginning in mid-2000, Lockheed-Martin began to deliver Block 50/52 variants equipped with an on-board oxygen generation system (OBOGS) designed to replace the obsolete, original LOX system.
  • Block 50D/52D Wild Weasel F-16CJ (CJ means block 50) comes in C-Model (1 seat) and D-Model (2 seat) versions. It is best recognized for its ability to carry the AGM-88 HARM and the AN/ASQ-213 HARM Targeting System (HTS) in the suppression of enemy air defenses [SEAD] mission. The HTS allows HARM to be employed in the range-known mode providing longer range shots with greater target specificity. This specialized version of the F-16, which can also carry the ALQ-119 Electronic Jamming Pod for self protection, became the sole provider for Air Force SEAD missions when the F-4G Wild Weasel was retired from the Air Force inventory. The lethal SEAD mission now rests solely on the shoulders of the F-16 Harm Targeting System. Although F-18s and EA-6Bs are HARM capable, the F-16 provides the ability to use the HARM in its most effective mode. The original concept called for teaming the F-15 Precision Direction Finding (PDF) and the F-16 HTS. Because this teaming concept is no longer feasible, the current approach calls for the improvement of the HTS capability. The improvement will come from the Joint Emitter Targeting System (JETS), which facilitates the use of HARM's most effective mode when launched from any JETS capable aircraft.
  • Block 60 - In May 1998 the UAE announced selection of the Block 60 F-16 to be delivered between 2002-2004. The upgrade package consists of a range of modern systems including conformal fuel tanks for greater range, new cockpit displays, an internal sensor suite, a new mission computer and other advanced features including a new agile beam radar.

Specifications (F-16C Block 30)

Orthographically projected diagram of the F-16.

Testing of the F-35 Diverterless Supersonic Inlet on an F-16 testbed. The original intake is shown in the top image.
Data from USAF sheet,[2] International Directory of Military Aircraft,[103] GlobalSecurity,[104] AerospaceWeb[105]
General characteristics
Performance

M61A1 on display.
Armament
Avionics
Sumber:

Wikipedia


TNI AU Indonesia