Thursday 26 February 2009

Nobel Fisika Indonesia

Central for Research and Development for Winning



Nobel Prize in Physics at Indonesia



"Untuk kerjanya dalam sinar katode".

Philipp Lenard

Philipp Lenard (eng)
Lénárd Fülöp (hu)

Philipp Lenard in 1900
Born June 7, 1862(1862-06-07)
Pozsony, Kingdom of Hungary, Austrian Empire
Died May 20, 1947(1947-05-20) (aged 84)
Messelhausen, Germany
Citizenship Hungarian[1] in Austria-Hungary (1862-1907),
German (1907-1947)
Nationality Hungarian
German
Fields Physics
Institutions University of Budapest
University of Breslau
University of Aachen
University of Heidelberg
University of Kiel
Alma mater University of Heidelberg
Doctoral advisor Robert Bunsen
Known for Cathode rays
Notable awards Nobel Prize for Physics (1905)

 Philipp Eduard Anton (von) Lenard (bahasa Hongaria: Lénárd Fülöp; 7 Juni 186220 Mei 1947) adalah fisikawan Hongaria-Jerman yang bekerja sebagai asisten Heinrich Hertz. Lenard mempelajari sifat-sifat sinar katode, sehingga ia memperoleh Hadiah Nobel dalam Fisika 1905. Lenard juga mempelajari efek fotoelektrik, menunjukkan bahwa elektron dibebaskan dari sebuah logam saat diterangi sinar ultraviolet. Ia juga menunjukkan bahwa hanya cahaya dengan panjang gelombang tertentu yang akan membebaskan elektron dan bahwa elektron dari energi yang ditentukan yang dipancarkan ke panjang gelombang yang diberikan. Penjelasan teoretis efek fotoelektrik telah diberikan oleh Albert Einstein berdasarkan teori kuantum Max Karl Ernst Ludwig Planck.

Nobel Lecture

Nobel Lecture, May 28, 1906

On Cathode Rays


The Lecture in Text Format
Pdf 187 kB
Copyright © The Nobel Foundation 1905
From Nobel Lectures, Physics 1901-1921, Elsevier Publishing Company, Amsterdam, 1967
In order to read the text you need Acrobat Reader.

Award Ceremony Speech

Presentation Speech by Professor A. Lindstedt, President of the Royal Swedish Academy of Sciences, on December 10, 1905
Your Majesty, Your Royal Highnesses, Ladies and Gentlemen.

The Royal Swedish Academy of Sciences has decided to give this year's Nobel Prize for Physics to Dr. Philipp Lenard, Professor at the University of Kiel, for his important work on cathode rays.

The discovery of the cathode rays forms the first link in the chain of brilliant discoveries with which the names of Röntgen, Becquerel and Curie are connected. The discovery itself was made by Hittorf as long ago as 1869 and therefore falls in a period before that which the Nobel Foundation is able to take into account. However, the recognition which Lenard has earned himself by the further development of Hittorf's discovery (which is becoming of increasing importance) shows that he too deserves the same reward as has already come to several of his successors for work of a similar nature.

Cathode rays are a phenomenon which occurs when electricity is discharged in a rarified gas. If an electric current is led through a glass tube containing rarified gas, certain radiation phenomena appear both in the gas and around the metal wires or poles through which the current is carried. These phenomena change in form and nature if the gas contained in the tube is rarified even further. At a given low pressure of gas, rays are emitted from the negative pole, called the "cathode", which are invisible to the naked eye but which can be observed through certain peculiar effects. This is due to the fact that when these rays hit the walls of the glass tube, or other obstacles in their path, they cause them to glow or fluoresce and are able to bring objects against which they are directed to a glowing heat. Like rays of ordinary light they propagate in straight lines, but they differ in that they can be deflected from their straight path by means of a magnet.

The general characteristics of these cathode rays had been known a long time, although not sufficiently to clarify their true nature. Twenty years ago two basically different concepts were prevalent. According to one concept, which was supported especially by German physicists, cathode rays consisted as do normal rays of light, of undulatory motion in the ether. According to the other concept, which was mainly popular among English scientists, cathode rays were supposed to consist of particles which were ejected from the cathode and were charged with negative electricity. The decision for one or other of these theories rested on the results of experimental research. These experiments, however, were greatly impeded by the fact that one seemed to be restricted to phenomena within the glass tube itself, since the cathode rays ended at the wall of the tube. The question of whether they could at all exist outside the tube remained unanswered.

These were the circumstances prevailing when Lenard began his work on cathode rays in 1893. He started from a fact which had been observed by his great and prematurely deceased teacher Heinrich Hertz: that these rays were able to pass through thin metal plates which had been introduced into the discharge tube. At Hertz's suggestion he utilized this fact in an attempt to lead the rays out of the tube. He used for this a tube which was not wholly made of glass but terminated at one place in a very thin aluminium plate.


As the cathode rays reached Lenard's "aluminium window", it was found that they passed through it and continued their course in the air outside the tube. This constituted a discovery which was to have the most far-reaching consequences, above all for the study of the radiation phenomena themselves. It became possible to study cathode rays under much simpler and more convenient experimental conditions than before, and also to separate observations on conditions needed for the production of the rays in the tube from questions concerning their propagation and other characteristics.

Lenard found first of all that the rays coming through the aluminium window possessed the same characteristics as those previously noted in rays inside the tube, i.e. that they cause fluorescence, can be deflected by a magnet and so on. He further proved that cathode rays have certain chemical effects such as causing impressions on photographic plates, ozonizing air, making gases conducting through so-called ionisation, etc.

It was also discovered that these rays pass unimpeded through empty space but that in gases they are subject to diffusion which increases with the density of the gas; and, moreover, that bodies in general differ in permeability, as their absorptive power bears a direct relationship to their density. Cathode rays proved to be carriers of negative electricity even in empty space and they could be deflected from their path by both magnetic and electrical fields.

Finally, Lenard showed that there are various types of cathode rays, differentiated amongst other things by the fact that they are deflected by magnets, to a greater or lesser extent. He also found that the formation of one or other type of ray is determined by the degree of gas rarification in the discharge tube.

When Lenard began his work on cathode rays he approached the concept of their nature from the German viewpoint noted above, whereby the rays are explained as being vibrations in the ether. Through the results of his work which we have just briefly described and in particular through the discovery that cathode rays are influenced by electrical fields, this view became untenable. He now came closer to the English view, put forward mainly by Crookes, that the rays are composed of particles which are ejected by the cathode and are bearers of negative electricity.

Since then, however, this theory has had to be modified in several significant details in order to reconcile it with phenomena which have been brought to light through the work of Lenard and others. It was shown, for example, that these particles which, according to Crookes, are ejected from the cathode - the so-called "electrons" - must have a considerably smaller mass than chemical atoms, that the velocity of these electrons can come to about one-third of the speed of light, but that there are also cathode rays which are considerably slower: the various types of cathode rays are in fact explained by the different speeds with which they are ejected from the cathode.

In his more recent work Lenard has been able to produce cathode rays with relatively slow speed, rays which are formed through the influence of ultraviolet light on bodies charged with negative electricity. This has also served to explain an important phenomenon noted by other research workers.

The research by Lenard, only a very brief report of which is given here, has been followed by a series of valuable studies by other scientists as well. Development of the theoretical basis for the theory of electrons has gone hand in hand with the experimental work.

The study of electrons, their characteristics and their behaviour in relation to matter has been given a sounder basis through these researches on cathode rays and has been gradually developed into one of the foremost theories of modern physics by Lenard himself and by other workers.

This theory is in fact not only important for the explanation of cathode rays and other closely related phenomena - the electron theory with its concepts on the constitution of matter has become of the most fundamental importance for the sciences of electricity and of light and for both the physicist and the chemist.

It is clear that Lenard's work on cathode rays has not only enriched our knowledge of these phenomena, but has also served in many respects as a basis for the development of the electron theory. Lenard's discovery that cathode rays can exist outside the discharge tube, in particular, has opened up new fields of research in physics.

It gave an impetus to the search for other thus far unknown sources of similar rays, and the revolutionary discoveries by past Nobel Prize winners - Röntgen, Becquerel and the two Curies - and by other scientists which have followed can well be considered the fruits of this impetus and links in the history of development of one and the same science.

Because of the overall importance of Lenard's work, and because of its scientific value and pioneering nature, the Royal Swedish Academy of Sciences has decided to award him the Nobel Prize in Physics for the year 1905.


From Nobel Lectures, Physics 1901-1921, Elsevier Publishing Company, Amsterdam, 1967

Copyright © The Nobel Foundation 1905

Ucapan Terima Kasih;
1. DEPDIKNAS Republik Indonesia
2. Kementrian Riset dan Teknologi Indonesia
3. Lembaga Ilmu Pengetahuan Indonesia (LIPI)
4. Akademi Ilmu Pengetahuan Indonesia
5. Tim Olimpiade Fisika Indonesia



Sumber:

Wikipedia

Nobel Prize Org.

Disusun Ulang Oleh;

Arip Nurahman

Pendidikan Fisika, FPMIPA. Universitas Pendidikan Indonesia
&
Follower Open Course Ware at MIT-Harvard University, Cambridge. USA.

Semoga Bermanfaat dan Terima Kasih

Friday 20 February 2009

Topics in Little Higgs Physics

CHANG, SPENCER, B.S. (Stanford University) 1999. (Harvard) 2001.

http://www.physics.harvard.edu/Thesespdfs/chang.pdf

Wednesday 18 February 2009

Outer Space

By:
Arip Nurahman
Department of Physics
Faculty of Sciences and Mathematics, Indonesia University of Education

and

Follower Open Course Ware at Massachusetts Institute of Technology
Cambridge, USA
Department of Physics
http://web.mit.edu/physics/
http://ocw.mit.edu/OcwWeb/Physics/index.htm
&
Aeronautics and Astronautics Engineering
http://web.mit.edu/aeroastro/www/
http://ocw.mit.edu/OcwWeb/Aeronautics-and-Astronautics/index.htm
















From: Wikipedia

Outer space, often simply called space, comprises the relatively empty regions of the universe outside the atmospheres of celestial bodies. Outer space is used to distinguish it from airspace (and terrestrial locations). Contrary to popular understanding, outer space is not completely empty (i.e. a perfect vacuum) but contains a low density of particles, predominantly hydrogen plasma, as well as electromagnetic radiation. Hypothetically, it also contains dark matter and dark energy.

The term "outer space" was first recorded by H. G. Wells in 1901. The shorter term space is actually older, being first used to mean the region beyond Earth's sky in John Milton's Paradise Lost in 1667.

Contents


See also


References

  1. ^ "Etymonline : Outer". Retrieved on 2008-03-24.
  2. ^ "Etymonline: Space". Retrieved on 2008-03-24.
  3. ^ NASA Human Body in a Vacuum
  4. ^ a b c d e Harding, Richard M. (1989), Survival in Space: Medical Problems of Manned Spaceflight, London: Routledge, ISBN 0-415-00253-2 .
  5. ^ Billings, Charles E. (1973). "Barometric Pressure", in edited by James F. Parker and Vita R. West: Bioastronautics Data Book, Second Edition, NASA. NASA SP-3006.
  6. ^ "Human Exposure to Vacuum". Retrieved on 2006-03-25.
  7. ^ Webb P. (1968). "The Space Activity Suit: An Elastic Leotard for Extravehicular Activity". Aerospace Medicine 39: 376–383.
  8. ^ Czarnik, Tamarack R.. "EBULLISM AT 1 MILLION FEET: Surviving Rapid/Explosive Decompression". Retrieved on 2006-03-25.
  9. ^ Linda Shiner. "X-15 Walkaround: A short guide to the fastest airplane ever.". Air & Space Magazine. Retrieved on 2007-01-19.
  10. ^ "Report of the Living With a Star Geospace Mission Definition Team". NASA (September, 2002).
  11. ^ "LWS Geospace Missions". NASA.
  12. ^ Davidson, Keay & Smoot, George. Wrinkles in Time. New York: Avon, 1993: 158-163
  13. ^ Silk, Joseph. Big Bang. New York: Freeman, 1977: 299.
  14. ^ NASA COBE website
  15. ^ FAR 91.211, http://www.airweb.faa.gov/Regulatory_and_Guidance_Library/rgFAR.nsf/0/ba9afbf96dbc56f0852566cf006798f9!OpenDocument&ExpandSection=-3

Tuesday 17 February 2009

Indonesian Space Sciences & Technology School

Prototyping Avionics

Level:

Undergraduate

Instructors:

Dr. Alvar Saenz-Otero



The F-15E Strike Eagle: An array of avionics and electronics systems gives it the capability to fight at low altitude, day or night, and in all weather. (Image courtesy of Armchair Aviator on Flickr.)

Course Features

Course Description

In the past building prototypes of electronic components for new projects/products was limited to using protoboards and wirewrap. Manufacturing a printed-circuit-board was limited to final production, where mistakes in the implementation meant physically cutting traces on the board and adding wire jumpers - the final products would have these fixes on them! Today that is no longer the case, while you will still cut traces and use jumpers when debugging a board, manufacturing a new final version without the errors is a simple and relatively inexpensive task. For that matter, manufacturing a prototype printed circuit board which you know is likely to have errors but which will get the design substantially closer to the final product than a protoboard setup is not only possible, but desirable. In this class, you'll learn to design, build, and debug printed-circuit-boards.

Avionics are the electronic systems used on aircraft, artificial satellites and spacecraft. Avionic systems include communications, navigation, the display and management of multiple systems and the hundreds of systems that are fitted to aircraft to meet individual roles. These can be as simple as a searchlight for a police helicopter or as complicated as the tactical system for an airborne early warning platform.



References

  • Avionics: Development and Implementation by Cary R. Spitzer (Hardcover - Dec 15, 2006)
  • Principles of Avionics, 4th Edition by Albert Helfrick, Len Buckwalter, and Avionics Communications Inc. (Paperback - Jul 1, 2007)
  • Avionics Training: Systems, Installation, and Troubleshooting by Len Buckwalter (Paperback - Jun 30, 2005)



Added & Edited

By: Arip Nurahman
Department of Physics Education, Faculty of Sciences and Mathematics
Indonesia University of Education

and

Follower Open Course Ware at Massachusetts Institute of Technology
Cambridge, USA
Department of Physics 
http://web.mit.edu/physics/
http://ocw.mit.edu/OcwWeb/Physics/index.htm
&
Aeronautics and Astronautics Engineering
http://web.mit.edu/aeroastro/www/
http://ocw.mit.edu/OcwWeb/Aeronautics-and-Astronautics/index.htm

















Sumber:

1. MIT Open Course Ware
2. Wikipedia

 

Thursday 12 February 2009

Nobel Fisika Indonesia

Central for Research and Development for Winning

Nobel Prize in Physics at Indonesia

 "Untuk investigasinya dalam kepadatan gas yang terpenting dan untuk penemuan argon olehnya."

John William Strutt, 3rd Baron Rayleigh

The Lord Rayleigh

John William Strutt, 3rd Baron Rayleigh
Born 12 November 1842(1842-11-12)
Langford Grove, Maldon, Essex, England
Died 30 June 1919(1919-06-30) (aged 76)
Terling Place, Witham, Essex, England
Nationality United Kingdom
Fields Physics
Institutions University of Cambridge
Alma mater University of Cambridge
Doctoral advisor Edward John Routh
Doctoral students J. J. Thomson
George Paget Thomson
Jagdish Chandra Bose
Known for Discovery of argon
Rayleigh waves
Rayleigh scattering
Rayleigh criterion
Duplex Theory
Theory of Sound
Rayleigh flow
Notable awards Nobel Prize for Physics (1904)
Copley Medal (1899)
Signature
John William Strutt, 3rd Baron Rayleigh (12 November 1842-30 Juni 1919) adalah fisikawan Inggris yang menurunkan sebuah persamaan untuk menghitung variasi sebaran cahaya dengan panjang gelombang. Ia juga mengembangkan sebuah persamaan yang menggambarkan penyebaran panjang gelombang pada radiasi badan hitam, namun hanya diterapkan pada panjang gelombang yang panjang. Rayleigh mencatat bahwa nitrogen di udara lebih padat daripada yang diperoleh dari mineral. Ia menulis jurnal Nature yang meminta usulan. Sir William Ramsay tertarik, dan penelitiannya memuncak pada 1894 dengan penemuan argon. Rayleigh dianugerahi Penghargaan Nobel dalam Fisika 1904.

Nobel Lecture

Nobel Lecture, December 12, 1904

The Density of Gases in the Air and the Discovery of Argon


From Nobel Lectures, Physics 1901-1921, Elsevier Publishing Company, Amsterdam, 1967
In order to read the text you need Acrobat Reader.

Award Ceremony Speech

Presentation Speech by Professor J.E. Cederblom, President of the Royal Swedish Academy of Sciences, on December 10, 1904
Your Majesty, Your Royal Highnesses, Ladies and Gentlemen.

The Royal Academy of Sciences has decided that the Nobel Prize for Physics for the present year is to be awarded to Lord Rayleigh, Professor at the Royal Institution, London, for his investigations on the density of the most important gases, and for his discovery of argon, one of the results of those investigations.

Among the problems in physico-chemical science that have more especially taken up the attention of scientists, the nature and composition of atmospheric air has always held a prominent position. For centuries this problem has been the object of both keen enquiry and extensive experimental investigation, consequently its history affords a very striking picture of the gradual development of those sciences in their entirety, closely connected as it is with the progress made in the various departments of physics and chemistry.

The retarding influence, which in former times was continuously exercised not only by incorrect opinions that had become firmly established but also by insufficient experimental groundwork, is plainly observable, and this explains the fact that during the seventeenth century the solution of the problem was not, and could not, be arrived at by such scientists as Boyle, Mayow, and Hales; it was only obtained a hundred years later, after the discoveries of Priestley, Black, Cavendish, and above all Lavoisier, in a manner which not only then, but up to quite a recent date, was considered final.

Under such circumstances it is but natural that the discovery of a new component of the air, one that is present to the considerable amount of about one per cent, excited great and justifiable astonishment. How was it possible, people asked, that in the face of all the improvements in both physical and chemical methods of observation of the present day this gas should for so long have remained unobserved? The answer to this question lies not only in the strange indifference to chemical investigations by which the age is characterized, but also in the investigations on the physical properties of atmospheric gases not having then reached that high degree of accuracy which Lord Rayleigh has since succeeded in attaining.

This is specially the case in determining densities. It has been shown that nitrogen, when separated from the air, is invariably heavier than when produced from its chemical compounds. As the difference is no less than one half per cent, there is no doubt as to the existence of this divergence, since the accuracy of the weigher was such that the possible fault could only be 1/50 thereof. Since between these two kinds of nitrogen- on the one hand the atmospheric, on the other that obtained from chemical compounds - there is a definite difference in density, the question arose: What could be the cause of this peculiar state of things? All the circumstances of the investigation which might be supposed to have any influence in this respect having been carefully examined, and their influence being found insufficient to explain the difference observed, there remained, in Lord Rayleigh's opinion, but one possibility, viz. that the atmospheric nitrogen was not a simple element, but was a combination of pure nitrogen and some new, hitherto unknown, heavier gas.

If so, this gas could be isolated in some way or other. The methods, physical or chemical, available for this isolation were already known in principle, and the problem now was to obtain the new gas not only in the purest form possible, but also in a sufficient quantity to allow of a thorough investigation of its essential properties. These both difficult and tedious tests have been carried out conjointly by Lord Rayleigh and Sir William Ramsay, and have resulted not only in completely proving that the new gas occurs in a ready state in the air, but also in establishing a thorough knowledge of its chief physical and chemical characteristics.

The time at my disposal does not permit of my giving a detailed account of these questions, interesting and important as they undoubtedly are, but I venture to call attention to the fact that besides the great importance always adherent to the proving of the existence of a new element, this one is of special interest owing to the purely physical investigations on which it is based, investigations which - embracing not only nitrogen but several other important gases-are characterized by a delicacy and precision that is very rarely met with in the history of physical research.

Considering also that to the discovery of argon we may trace one of the causes of Sir William Ramsay's brilliant discovery of helium and the other so-called "noblegases" which followed shortly after, we may truly aver that Lord Rayleigh's work is of that fundamental character that the award to him of the Nobel Prize in Physics must be greeted with sincere and fully justified satisfaction, more especially since this section of his work is but a single link in a long chain of remarkable investigations with which from various points of view he has enriched Physical Science, and which are of such a nature that they will ensure him a prominent position in its history for all time to come.

From Nobel Lectures, Physics 1901-1921, Elsevier Publishing Company, Amsterdam, 1967

Copyright © The Nobel Foundation 1904
Ucapan Terima Kasih;
1. DEPDIKNAS Republik Indonesia
2. Kementrian Riset dan Teknologi Indonesia
3. Lembaga Ilmu Pengetahuan Indonesia (LIPI)
4. Akademi Ilmu Pengetahuan Indonesia
5. Tim Olimpiade Fisika Indonesia
Sumber:

1. Wikipedia

2. Nobel Prize Org.

Disusun Ulang Oleh;

Arip Nurahman

Pendidikan Fisika, FPMIPA. Universitas Pendidikan Indonesia
&
Follower Open Course Ware at MIT-Harvard University, Cambridge. USA.

Semoga Bermanfaat dan Terima Kasih

Tuesday 10 February 2009

Greenhouse gas

A greenhouse gas (sometimes abbreviated GHG) is a gas in an atmosphere that absorbs and emits radiation within the thermal infrared range. This process is the fundamental cause of the greenhouse effect. 

The primary greenhouse gases in the Earth's atmosphere are water vapour, carbon dioxide, methane, nitrous oxide, and ozone. In the Solar System, the atmospheres of Venus, Mars, and Titan also contain gases that cause greenhouse effects. Greenhouse gases greatly affect the temperature of the Earth; without them, Earth's surface would average about 33°C (59°F) colder than the present average of 14 °C (57 °F).

Since the beginning of the Industrial Revolution, the burning of fossil fuels has contributed to a 40% increase in the concentration of carbon dioxide in the atmosphere from 280 ppm to 397 ppm, despite the uptake of a large portion of the emissions through various natural "sinks" involved in the carbon cycle. Anthropogenic carbon dioxide (CO2) emissions (i.e., emissions produced by human activities) come from combustion of carbon based fuels, principally wood, coal, oil, and natural gas.


Wikipedia

Friday 6 February 2009

Nobel Fisika Indonesia

Central for Research and Development for Winning




Nobel Prize in Physics at Indonesia

"Belajar Kepada Tiga Orang Hebat Ini"


"Kolaborasi antara Guru dan Murid yang Mengagumkan"




Nobel Prize® medal - registered trademark of the Nobel Foundation

The Nobel Prize in Physics 1903

"in recognition of the extraordinary services he has rendered by his discovery of spontaneous radioactivity"
"in recognition of the extraordinary services they have rendered by their joint researches on the radiation phenomena discovered by Professor Henri Becquerel"
Antoine Henri BecquerelPierre CurieMarie Curie, née Sklodowska
Antoine Henri BecquerelPierre CurieMarie Curie, née Sklodowska
half 1/2 of the prizequarter 1/4 of the prizequarter 1/4 of the prize
FranceFranceFrance
École Polytechnique
Paris, France
École municipale de physique et de chimie industrielles (Municipal School of Industrial Physics and Chemistry)
Paris, France
b. 1852
d. 1908
b. 1859
d. 1906
b. 1867
(in Warsaw, Poland, then Russian Empire)
d. 1934
Titles, data and places given above refer to the time of the award.
Photos: Copyright © The Nobel Foundation



Antoine Henri Becquerel

Henri Becquerel, French physicist
Born15 December 1852
ParisFrance
Died25 August 1908 (aged 55)
Le CroisicBrittanyFrance
NationalityFrench
FieldsPhysicschemistry
InstitutionsConservatoire des Arts et Metiers
École Polytechnique
Muséum National d'Histoire Naturelle
Alma materÉcole Polytechnique
École des Ponts et Chaussées
Doctoral studentsMarie Curie
Known forRadioactivity
Notable awardsNobel Prize in Physics (1903)
Notes
Note that he is the father of Jean Becquerel, the son of A. E. Becquerel, and the grandson of Antoine César Becquerel.

"Pengakuan terhadap pelayanan yang luar biasa yang telah dilakukannya dalam menemukan spontanitas radioaktivitas".

 Antoine Henri Becquerel (lahir di Paris, 15 Desember 1852 – meninggal di Le Croisic, 25 Agustus 1908 pada umur 55 tahun) adalah salah seorang fisikawan asal Perancis yang menemukan radioaktivitas. Namanya digunakan untuk satuan radioaktivitas.

Kehidupan awal

Becquerel terlahir dari keluarga yang menelurkan 4 generasi ilmuwan, termasuk putranya sendiri Jean. Henri Becquerel belajar ilmu pengetahuan alam di École Polytechnique dan teknik di École des Ponts et Chaussées. Pada tahun 1890, ia menikah dengan Louise Désirée Lorieux.

Karier

Pada tahun 1892, ia menjadi orang ke-3 di keluarganya yang menduduki kursi fisika di Muséum National d'Histoire Naturelle. Pada tahun 1894, ia menjadi ketua insinyur di Departemen Jembatan dan Jalan Raya.

Pada tahun 1896, ketika mengamati fosforesensi garam uranium, tanpa sengaja Becquerel menemukan radioaktivitas. Meneliti karya Wilhelm Conrad Röntgen, Becquerel mengurung zat yang berpijar, kalium uranil sulfat, dalam pelat foto dan bahan hitam untuk mempersiapkan penelitian yang memerlukan cahaya terang. Namun, sebelum melakukan penelitian, Becquerel menemukan pelat foto itu itu sudah terpajan, menunjukkan gambaran zat. Penemuan itu membuatnya meneliti emisi spontan radiasi nuklir.

Pada tahun 1903, ia menerima Nobel Fisika dengan Pierre dan Marie Curie dalam pengakuan jasa luar biasa yang telah dilakukannya dengan penemuan radioaktivitas spontan.



Pierre Curie

Born15 May 1859
ParisFrance
Died19 April 1906 (aged 46)
ParisFrance
NationalityFrench
FieldsPhysics
Alma materSorbonne
Doctoral studentsPaul Langevin
André-Louis Debierne
Marguerite Catherine Perey
Known forRadioactivity
Notable awardsNobel Prize in Physics (1903)
Notes
Married to Marie Curie (m. 1895), their children includeIrène Joliot-Curie and Ève Curie.

Pierre Curie (lahir di Paris, 15 Mei 1859 – meninggal di Paris, 19 April 1906 pada umur 46 tahun) adalah seorang pionir dalam bidang kristalografi, magnetisme, dan radioaktivitas berkebangsaan Perancis.

Setelah menyelesaikan pendidikan sarjananya pada usia 18 tahun, ia bekerja sebagai seorang instruktur laboratorium. Pada tahun 1881, Pierre dan saudara lelakinya, Jacques berhasil mendemonstrasikan bahwa kristal-kristal dapat meleleh saat dialiri medan listrik. Hampir seluruh sirkuit listrik digital saat ini menggunakan langkah ini dalam bentuk osilator kristal.

Pierre Curie mempelajari ferromagnetisme, paramagnetisme, dan diamagnetisme untuk tesis doktoratnya, dan menemukan pengaruh suhu terhadap paramagnetisme yang kini dikenal sebagai Hukum Curie. Ia bekerja dengan istrinya, Marie Curie dalam mengisolasikan polonium dan radium. Mereka berdua adalah orang-orang pertama yang menggunakan istilah 'radioaktivitas', dan merupakan penggagas dalam bidang tersebut.

Pierre dan salah seorang muridnya juga adalah orang pertama yang menemukan tenaga nuklir, melalui identifikasi terhadap pengeluaran panas yang berkelanjutan dari partikel-partikel radium.

Bersama dengan istrinya, Marie, Pierre dianugerai Penghargaan Nobel dalam Fisika pada tahun 1903 sebagai "pengakuan terhadap jasa-jasa luar biasa yang telah mereka lakukan dalam penelitian mereka mengenai fenomena radiasi yang ditemukan oleh Professor Henri Becquerel." Pierre meninggal dunia akibat kecelakaan kendaraan di Paris pada 19 April 1906. Putri Pierre dan Marie Curie, Irène Joliot-Curie, serta menantu mereka, Jean Joliot-Curie juga adalah fisikawan-fisikawan yang terlibat dalam penelitian radioaktivitas.



Marie Skłodowska–Curie

Born7 November 1867
WarsawVistula LandRussian Empire
Died4 July 1934 (aged 66)
Passy, France
CitizenshipRussian, later French
NationalityPolish
Fieldsphysicschemistry
InstitutionsUniversity of Paris
Alma materUniversity of Paris
ESPCI
Doctoral advisorHenri Becquerel
Doctoral studentsAndré-Louis Debierne
Óscar Moreno
Marguerite Catherine Perey
Known forradioactivitypoloniumradium
Notable awardsNobel Prize in Physics (1903)
Davy Medal (1903)
Matteucci Medal (1904)
Nobel Prize in Chemistry (1911)
Notes
She is the only person to win Nobel Prizes in twosciences.
She was the wife of Pierre Curie, and the mother ofIrene Joliot-Curie and Ève Curie.


"Pengakuan terhadap pelayanan yang luar biasa yang telah dilakukan mereka dalam riset mereka dalam fenomena radiasi yang ditemukan oleh Professor Henri Becquerel".

Maria Skłodowska-Curie (lahir di Warsawa, Polandia, 7 November 1867 – meninggal 4 Juli 1934 pada umur 66 tahun) adalah perintis dalam bidang radiologi dan pemenang Hadiah Nobel dua kali, yakni Fisika pada 1903 dan Kimia pada 1911. Ia mendirikan Curie Institute. Bersama dengan suaminya, Pierre Curie, ia menemukan unsur radium.

Curie adalah salah satu dari sedikit orang yang memenangi dua Hadiah Nobel dalam dua bidang, adalah salah satu peneliti terpenting dalam bidang radiasi dan efeknya sebagai perintis radiologi. Catatan miliknya bersifat radioaktif, sampai baru-baru ini seorang cucu perempuannya mendekontaminasinya.

Marie Curie dibesarkan di Polandia dalam keluarga guru. Karena krisis di Polandia, ia jatuh miskin dan harus hidup hemat. Yang lebih menyedihkan lagi, ia harus sembunyi-sembunyi untuk belajar ilmunya. Pada tahun 1891 Marie melanjutkan studinya tentang Fisika dan Matematika di Universitas Sorbonne. Baru setelah dia pergi ke Paris untuk sekolah di Universitas Sorbonne maka dia dapat lebih leluasa untuk melakukan riset sampai akhirnya dari bekalnya itu dia mampu mengisolasi radium dari laboratorium tuanya yang sederhana; dari sinilah awal kepopulerannya.

Dedikasinya yang tinggi terhadap ilmu pengetahuan sangatlah tinggi. Sampai saat ini, belum ada lagi seorang perempuan dengan talenta dan dedikasi yang demikian besar terhadap ilmu pengetahuan. Marie Curie terus bekerja dan menyelediki nuklir dan radioaktif hanya di dalam laboratorium sederhana tanpa mau memikirkan diri sendiri. Bahkan ia tidak mau mendaftarkan penemuannya ke paten karena terlalu berpegang teguh pada prinsip, "ilmu pengetahuan adalah untuk umat manusia".


A scientist in his laboratory is not a mere technician: he is also a child confronting natural phenomena that impress him as though they were fairy tales.
Marie Curie 

After all, science is essentially international, and it is only through lack of the historical sense that national qualities have been attributed to it.
Marie Curie 

All my life through, the new sights of Nature made me rejoice like a child.
Marie Curie 

Be less curious about people and more curious about ideas.
Marie Curie 

I am one of those who think like Nobel, that humanity will draw more good than evil from new discoveries.
Marie Curie 

I have frequently been questioned, especially by women, of how I could reconcile family life with a scientific career. Well, it has not been easy.
Marie Curie 

I have no dress except the one I wear every day. If you are going to be kind enough to give me one, please let it be practical and dark so that I can put it on afterwards to go to the laboratory.
Marie Curie 

I was taught that the way of progress was neither swift nor easy.
Marie Curie 

In science, we must be interested in things, not in persons.
Marie Curie 

Life is not easy for any of us. But what of that? We must have perseverance and above all confidence in ourselves. We must believe that we are gifted for something and that this thing must be attained.
Marie Curie 

Nothing in life is to be feared, it is only to be understood. Now is the time to understand more, so that we may fear less.
Marie Curie 

One never notices what has been done; one can only see what remains to be done.
Marie Curie 

There are sadistic scientists who hurry to hunt down errors instead of establishing the truth.
Marie Curie 



Oleh: Prof. Yohanes Surya, M.Sc., Ph.D.


Marie Curie merupakan nama yang tidak asing lagi di telinga kita. Ia adalah wanita pertama yang pernah memenangkan Nobel. Ia pun tidak tanggung-tanggung, karena ia memenangkan dua Nobel, Nobel Fisika dan Nobel Kimia.

Penelitiannya mengenai bahan radioaktif menghadiahkan Marie dan suaminya, Pierre Curie, setengah dari total hadiah Nobel Fisika pada tahun 1903. Setengahnya lagi dimenangkan oleh Henri Becquerel, penemu radioaktivitas.

Ternyata bahan radioaktif jugalah yang kemudian menuntun Marie hingga akhirnya menjadi pemenang tunggal Nobel Kimia pada tahun 1911. Marie memang wanita luar biasa! Cerita hidupnya pun sangat luar biasa, bagaikan kisah drama yang penuh dengan kesedihan, kesusahan, dan penderitaan.

Marie lahir pada tanggal 7 November 1867 di Warsawa, Polandia. Oleh kedua orangtuanya yang merupakan guru SMA, ia diberi nama Maria Sklodowska. Karena orangtuanya adalah guru, mereka sangat mengerti betapa pentingnya  pendidikan bagi anak-anaknya. Maria pun disekolahkan di sekolah lokal, tetapi ayahnya sendirilah yang pertama kali mengajarkannya fisika dan kimia.

Maria sangat pandai dan cepat menyerap semua pelajaran. Sayangnya, pada saat itu kaum wanita di Polandia tidak punya kesempatan sama sekali untuk meneruskan pendidikan ke tingkat yang lebih tinggi. Maria yang begitu haus akan pengetahuan bermimpi untuk pergi ke Perancis dan belajar di Sorbonne, Paris.

Tetapi keluarganya tidak punya cukup uang untuk membiayainya. Enam tahun lamanya ia menunggu keberuntungan yang bisa memberinya kesempatan untuk pergi ke Paris. Kesabarannya tidak sia-sia. Kakaknya, Bronya, menikah dengan seorang doktor dan tinggal di Paris. Maria pun diundang untuk pindah ke Paris dan tinggal bersama kakaknya di sana supaya ia bisa bersekolah di Sorbonne.


Dimulailah perjuangan Maria sebagai seorang ilmuwan penuh bakat. Maria mengganti ejaan namanya menjadi Marie, mengikuti bahasa Perancis. Perjuangannya di Perancis dimulai saat usianya sudah mencapai 24 tahun.

Kecintaannya pada ilmu pengetahuan membuatnya mampu mengalahkan semua kesulitan, termasuk kesulitan berbahasa Perancis, sehingga dalam waktu dua tahun Marie pun berhasil lulus dari jurusan Fisika pada tahun 1893 sebagai lulusan terbaik.

Setahun kemudian ia lulus dari jurusan Matematika pada peringkat kedua dari lulusan terbaik. Sorbonne juga merupakan tempat perkenalannya dengan seorang fisikawan terkenal Pierre Curie. Minat yang sama pada ilmu pengetahuan menyatukan keduanya sehingga akhirnya mereka menikah pada bulan Juli 1895.

Uang yang mereka dapatkan dari hadiah pernikahan mereka gunakan untuk membeli dua sepeda. Marie dan suaminya, Pierre, sangat menyukai petualangan bersepeda yang bagi mereka merupakan cara menyegarkan diri. Kehidupan Marie dan Pierre terus dipenuhi dengan penelitian, dan tidak lama kemudian Marie pun mulai mencari-cari topik untuk tesis doktoralnya.

Pada tahun 1896 Henri Becquerel, secara tidak sengaja, menemukan radioaktivitas. Ia sedang meneliti garam uranium yang sengaja dijemur di bawah sinar matahari untuk mengetahui pengaruh cahaya terhadap radiasi sinar-X yang ditemukan oleh Wilhelm Conrad Röntgen pada 8 November 1895.

Ternyata sewaktu Becquerel melaksanakan penelitian ini, cuaca di sana terus saja berawan selama beberapa hari, padahal ia membutuhkan sinar matahari untuk penelitiannya. Tetapi kemudian ia memperhatikan suatu hal yang tidak biasa.

Ternyata garam uraniumnya memancarkan radiasi secara spontan, walaupun tidak diberi cahaya! Radiasi yang dihasilkan ini merupakan radiasi jenis baru, yang mampu menembus lempengan logam dan menghitamkan pelat foto. Becquerel langsung mengumumkan penemuannya ini di suatu pertemuan l’Académie des Sciences.

Tetapi penemuannya ini tidak banyak mengundang perhatian ilmuwan-ilmuwan yang hadir di sana saat itu karena para ilmuwan masih terpesona dengan penemuan sinar-X oleh Röntgen. Hanya Marie Curie sajalah yang tampaknya tertarik dengan sinar misterius yang dipancarkan uranium tersebut.

"Nothing in life is to be feared, it is only to be understood. Now is the time to understand more, so that we may fear less."
~Marie Curie~

Marie pun mulai menyelidiki radiasi misterius tersebut. Ia menggunakan elektrometer, yaitu sebuah alat yang bisa mengukur arus listrik yang lemah. Alat ini dibuat oleh Pierre dan adiknya, Jacques Curie. Pierre dan Jacques sebelumnya sudah pernah menemukan efek piezoelektrik, dan efek inilah yang menjadi dasar kerja elektrometer. Dengan elektrometer, Marie hanya membutuhkan beberapa hari saja sebelum menemukan bahwa  thorium memancarkan cahaya yang sama dengan uranium.

Ia pun kemudian menyelidiki lagi senyawa-senyawa kimia lainnya. Ternyata, kekuatan radiasi yang  dihasilkan tidak bergantung pada jenis senyawanya, tetapi hanya bergantung pada jumlah uranium atau thorium yang terkandung di dalam senyawa tersebut. Marie langsung menyimpulkan bahwa kemampuan radiasi uranium tidak bergantung pada susunan atom di dalam molekul, tetapi pada bagian dalam (interior) dari atomnya itu sendiri.

Ia melanjutkan meneliti semua elemen dalam Susunan Berkala Unsur-unsur. Ternyata hanya uranium dan thorium sajalah yang bisa memancarkan radiasi ini. Langkah berikut yang diambil oleh Marie adalah meneliti mineral/bebatuan alam yang mengandung uranium dan thorium. Dari semua mineral alam tersebut, ia menemukan  bahwa pitchblende memancarkan radiasi secara lebih aktif, bahkan empat sampai lima kali lebih kuat dari uranium. Marie pun membuat hipotesa bahwa ada sebuah elemen baru yang terkandung di dalam mineral tersebut, dan elemen ini jauh lebih aktif dari uranium.

Melihat serunya penelitian yang dilakukan oleh istrinya, Pierre pun menjadi tertarik dan kemudian memutuskan untuk bergabung dengan penelitian Marie tersebut. Pierre menghentikan semua penelitiannya tentang kristal dan sifat simetri di alam yang semula merupakan ketertarikan utamanya. Kerjasama keduanya dengan cepat membawa hasil. Pada akhir Juni 1898, mereka berhasil mendapatkan sebuah zat yang 300 kali lebih  aktif dari uranium. Mereka yakin bahwa zat tersebut merupakan sejenis logam yang baru yang belum pernah ditemukan sebelumnya, dan logam ini memiliki sifat-sifat analitik yang mirip dengan bismuth. Mereka pun mengusulkan  supaya logam baru ini disebut Polonium, sesuai nama negara asal Marie, Polandia. Dalam publikasinya ini mereka untuk pertama kalinya menggunakan istilah radioaktivitas.

Beberapa bulan kemudian, yaitu pada tanggal 26 Desember 1898, mereka kembali menghasilkan penemuan baru. Marie dan Pierre menemukan suatu zat lain lagi yang juga sangat aktif dan memiliki sifat kimia yang sangat mirip dengan barium murni. Mereka mengusulkan supaya zat baru ini diberi nama Radium. Keduanya pun melanjutkan penelitian mereka untuk membuktikan bahwa radium benar-benar merupakan suatu elemen baru. Keduanya bekerja tanpa henti di sebuah gudang besar yang tidak terpakai. 

Walaupun gudang itu begitu panas di musim panas dan kering dan dingin saat musim dingin, tetapi gudang itu menjadi tempat yang memberikan kebahagiaan terbesar bagi pasangan Curie. Marie akhirnya berhasil mengisolasi satu desigram radium klorida yang hampir murni dan menentukan berat atom radium. Hasil penelitiannya ini dilaporkannya dalam tesis doktoralnya pada tanggal 25 Juni 1903. Tesisnya tersebut pun dinyatakan sebagai kontribusi ilmiah terbesar yang  pernah disumbangkan oleh suatu tesis doktoral.


‎"Hidup tidak mudah bagi siapapun. Tapi kita harus mempunyai kegigihan dan percaya pada diri sendiri. Kita harus percaya bahwa kita diberi suatu bakat dan berapapun pengorbanannya, kita harus mendapatkannya ." ~Marie Curie~

 
Ucapan Terima Kasih;
1. DEPDIKNAS Republik Indonesia
2. Kementrian Riset dan Teknologi Indonesia
3. Lembaga Ilmu Pengetahuan Indonesia (LIPI)
4. Akademi Ilmu Pengetahuan Indonesia
5. Tim Olimpiade Fisika Indonesia



Sumber:

Wikipedia

Nobel Prize Org.

Disusun Ulang Oleh;

Arip Nurahman

Pendidikan Fisika, FPMIPA. Universitas Pendidikan Indonesia
&
Follower Open Course Ware at MIT-Harvard University, Cambridge. USA.

Semoga Bermanfaat dan Terima Kasih