Sunday, 1 April 2007

Compton Gamma Ray Observatory Instruments



CGRO carried a complement of four instruments that covered an unprecedented six decades of the electromagnetic spectrum, from 20 keV to 30 GeV (from 0.02 MeV to 30000 MeV). In order of increasing spectral energy coverage:


BATSE

  • The Burst and Transient Source Experiment, (BATSE) by NASA's Marshall Space Flight Center searched the sky for gamma ray bursts (20 to >600 keV) and conducted full sky surveys for long-lived sources. It consisted of eight identical detector modules, one at each of the satellite's corners (left, right; front and back; top and bottom). Each module consisted of both a NaI(Tl) Large Area Detector (LAD) covering the 20 keV to ~2 MeV range, 50.48 cm in dia by 1.27 cm thick, and a 12.7 cm dia by 7.62 cm thick NaI Spectroscopy Detector, which extended the upper energy range to 8 MeV, all surrounded by a plastic scintillator in active anti-coincidence to veto the large background rates due to cosmic rays and trapped radiation. Sudden increases in the LAD rates triggered a high-speed data storage mode, the details of the burst being read out to telemetry later. Bursts were typically detected at rates of roughly one per day over the 9-year CGRO mission. A strong burst could result in the observation of many thousands of gamma rays within a time interval ranging from ~0.1 s up to about 100 s.

OSSE

  • The Oriented Scintillation Spectrometer Experiment, (OSSE), by the Naval Research Laboratory detected gamma rays entering the field of view of any of four detector modules, which could be pointed individually, and were effective in the 0.05 to 10 MeV range. Each detector had a central scintillation spectrometer crystal of NaI(Tl) 12 in (303 mm) in diameter, by 4 in (102 mm) thick, optically coupled at the rear to a 3 in (76.2 mm) thick CsI(Na) crystal of similar diameter, viewed by seven photomultiplier tubes, operated as a phoswich: i.e., particle and gamma-ray events from the rear produced slow-rise time (~1 μs) pulses, which could be electronically distinguished from pure NaI events from the front, which produced faster (~0.25 μs) pulses. Thus the CsI backing crystal acted as an active anticoncidence shield, vetoing events from the rear. A further barrel-shaped CsI shield, also in electronic anticoincidence, surrounded the central detector on the sides and provided coarse collimation, rejecting gamma rays and charged particles from the sides or most of the forward field-of-view (FOV). A finder level of angular collimation was provided by a tungston slat collimator grid within the outer CsI barrel, which collimated the response to a 3.8° x 11.4° FWHM rectangular FOV. A plastic scintillator across the front of each module vetoed charged particles entering from the front. The four detectors were typically operated in pairs of two. During a gamma-ray source observation, one detector would take observations of the source, while the other would slew slightly off source to measure the background levels. The two detectors would routinely switch roles, allowing for more accurate measurements of both the source and background. The instruments could slew with a speed of approximately 2 degrees per second.

COMPTEL

  • The Imaging Compton Telescope, (COMPTEL) by the Max Planck Institute for Extraterrestrial Physics, the University of New HampshireNetherlands Institute for Space Research, and ESA's Astrophysics Division was tuned to the 0.75-30 MeV energy range and determined the angle of arrival of photons to within a degree and the energy to within five percent at higher energies. The instrument had a field of view of one steradian. For cosmic gamma-ray events, the experiment required two nearly simultaneous interactions, in a set of front and rear scintillators. Gamma rays would Compton scatter in a forward detector module, where the interaction energy E1, given to the recoil electron was measured, while the Compton scattered photon would then be caught in one of a second layer of scintillators to the rear, where its total energy, E2, would be measured. From these two energies, E1 and E2, the Compton scattering angle, angle θ, can be determined, along with the total energy, E1 + E2, of the incident photon. The positions of the interactions, in both the front and rear scintillators, was also measured. The vectorV, connecting the two interaction points determined a direction to the sky, and the angle θ about this direction, defined a cone about V on which the source of the photon must lie, and a corresponding "event circle" on the sky. Because of the requirement for a near coincidence between the two interactions, with the correct delay of a few nanoseconds, most modes of background production were strongly suppressed. From the collection of many event energies and event circles, a map of the positions of sources, along with their photon fluxes and spectra, could be determined.

EGRET

  • The Energetic Gamma Ray Experiment Telescope, (EGRET) measured high energy (20 MeV to 30 GeV) gamma ray source positions to a fraction of a degree and photon energy to within 15 percent. EGRET was developed by NASA Goddard Space Flight Center, the Max Planck Institute for Extraterrestrial Physics, and Stanford University. Its detector operated on the principle of electron-positron pair production from high energy photons interacting in the detector. The tracks of the high-energy electron and positron created were measured within the detector volume,and the axis of the V of the two emerging particles projected to the sky. Finally, their total energy was measured in a large calorimeter scintillation detector at the rear of the instrument.

No comments: