Wednesday, 6 February 2008

Newton’s Error – Violations of the Laws of Physics

Newton’s Error Violations of the Laws of Physics
(Continued from The Final Theory)
Mark McCutcheon

Add And Edited by:
Arip Nurahman
Department of Physics, Faculty of Sciences and Mathematics
Indonesia University of Education

Gravity is one of the most familiar and important phenomena in nature. Although it has always been known that something obviously causes objects to fall, it wasn’t until Isaac Newton (1642-1727) that we had a clear model of this something as an attracting force emanating from all matter in a manner that is precisely describable via an equation. Newton also claimed that this very same attracting force was responsible for the orbits observed in the heavens, making our universe as comprehensible and predictable as a clockwork mechanism for the first time in history. This was such a monumental achievement in Newton’s day that it set the stage for other models of forces described by equations in similar fashion ever since.

Although today we commonly speak of such forces, it is often overlooked that modern science still has little or no solid physical explanation for many of them. The legacy of theories and equations that compose our body of scientific knowledge today works rather well, making it easy to forget that these are largely abstract models – not solid physical explanations. Newton was the first in a long line of scientists to produce explanatory models for various classes of phenomena, which can be very compelling and useful but cannot be fully explained in physically meaningful and scientifically viable ways even today.

In fact, there was a strong undercurrent of resistance to Newton’s gravitational force concept when it was introduced, since it seemed to represent an almost magical force at a time when solid rational thought was finally beginning to prevail over the mysticism and superstition of ages past. Today, largely as a result of the scientific acceptance of Newtonian gravity, we have grown accustomed to the idea of unexplained forces reaching across empty space to affect objects at a distance in some equally unexplained manner.

We have even grown accustomed to the fact that many of these forces (gravity, magnetism, electric charge, etc.) have no known power source. However, in Newton’s time such concepts were only known in stories of myth and magic. To philosophers such as René Descartes (1596-1650), it had been a long journey for society to shake off the mysticism of the past and finally enter a welcome era of solid rational thought and debate.

In fact, Descartes himself had an earlier and widely accepted physical theory of orbits that claimed the planets were dragged along by an invisible material, known as the ether, which presumably swirled around the sun. Although this theory had its own problems, in this era of rationality many considered Newton’s idea of a completely unexplained force acting across empty space to be an unwelcome return to the magical thinking of the past. Newton realized this fundamental problem with his theory of a gravitational force, and never claimed to be able to explain it. However, the compelling and rational nature of his accompanying mathematical model soon solidified the force of gravity as a physical reality and a scientific fact that continued to grow in acceptance for centuries, being the predominant theory even today.

It is important to note, however, that although it is generally recognized that Newton’s gravitational force lacks a proper physical explanation, the much larger issue – that it violates the laws of physics – has gone almost entirely unnoticed. This point will be clearly illustrated, beginning with a reminder of one of the most fundamental and unbreakable laws of physics – The Law of Conservation Of Energy.
The Law of Conservation Of Energy

Energy can neither be created nor destroyed, but merely
changes from one form to another.

This is one of the most fundamental and unbreakable laws of physics, serving as a test for the scientific validity of any proposed theory or invention. If a proposed theory or device either uses or produces energy it must draw on an existing power source to do so, merely transforming energy from one form to another in the process. For example, the stored chemical energy in gasoline changes to kinetic energy as it is “used up” to accelerate a vehicle. In accordance with the Law of Conservation Of Energy, the chemical energy in the gasoline does not actually vanish, but is converted into another form of energy – the kinetic energy of the vehicle’s motion. Similarly, the kinetic energy of the vehicle did not simply appear out of nowhere, but was converted from an existing chemical energy source – the gasoline. Although we commonly refer to power sources being drained, what we actually mean by this is that the energy from a given power source is converted into another form of energy elsewhere. This is the law that tells us perpetual motion machines are impossible since they are considered to be devices capable of producing or expending energy continually without draining a power source. There is no such thing as “energy for free” in our science. Free energy devices violate our most elementary laws of physics.
Also noteworthy, once it was realized that energy (denoted by the symbol E) and matter (denoted by m for mass) can change form back and forth, modeled by Einstein’s famous equation E=mc2, the Law of Conservation Of Energy included matter as one of the energy forms. The explosion of an atomic bomb, for example, does not actually create the enormous amount of energy in its explosion, but is considered to release it by converting its original core of matter into energy. Therefore, in all things the Law of Conservation Of Energy must be upheld.

Newton’s Gravitational Force Violates the Law of
Conservation Of Energy

There is nothing in Newton’s gravitational theory stating that the force of gravity weakens as it expends energy. The mass of the moon exceeds one percent of the Earth’s mass and would fly past the Earth and off into space if not forcefully constrained by gravity to circle the Earth, according to Newton’s theory. Yet this tremendous continual effort expended by Earth’s gravitational field is not considered to diminish the strength of this field at all – millennium after millennium.

Returning to the vehicle analogy, when a car increases its speed it is said to accelerate, which is only possible by drawing on a power source, converting its energy into the car’s increased speed or kinetic energy. Turning the vehicle in a circle is another form of speed change or acceleration, involving a constant, forced change from its natural straight-line direction of travel. This continuously forced circular direction change is known as centripetal acceleration, and also requires energy to maintain this constant diversion from the natural straight-line path of objects. Likewise, the natural forward momentum of the moon would carry it away from our planet and off into space in a straight line if gravity were not forcefully pulling it into a circular orbit moment by moment. Yet this tremendous energy expenditure is not balanced by a conversion of energy from any known power source. This is a creation of energy from nothing – energy for free – rather than a conversion of energy from one form (a power source) to another (circular centripetal acceleration). This situation is a clear violation the Law of Conservation Of Energy.

Gravity also forcefully holds down all objects on the surface of our planet, which would drift off into space otherwise. In fact, the pull of gravity holds our very planet together, creating tremendous crushing forces within the center of the Earth. This has been going on for well over 4 billion years, yet no known power source is being drawn upon to support this tremendous ongoing energy expenditure.

This mystery is further deepened when we consider that not only is there no drainage of energy from a power source to support the effort expended by the gravitational force, but in fact there is no power source at all. A gravitational force is considered to emanate from within each atom of matter, adding up to the tremendous overall gravity of the Earth, yet we still have no explanation for its endless power source despite having created detailed atomic theories – and even having split the atom. This is a textbook case of an impossible free energy device.

This discussion naturally raises the question of why such a fundamental violation of our laws of physics doesn’t generate intense scientific concern, curiosity, and investigation. Why is Newtonian gravitational theory simply accepted and its mysteries left uninvestigated? This question brings a curious mixture of responses. One answer is that science has responded to these concerns by accepting a very different explanation of gravity proposed by Albert Einstein (1879-1955) known as General Relativity Theory, which will be explored further in later discussions. However, Einstein’s theory offers no solutions to these problems either. In fact, these violations are not generally acknowledged as the reasons for accepting Einstein’s alternate theory of gravity, nor are these violations even generally acknowledged at all today.

Perhaps more curious is the fact that even though General Relativity Theory is generally accepted in academic circles as the proper description of gravity, it is not widely taught or used by engineers and physicists – usually being reserved for optional or advanced study, and mostly for rare and exotic applications. Most university science and engineering graduates know little or nothing about Einstein’s theory of gravity despite the fact that it is presumably the true explanation of this phenomenon, and it is not generally used in our space programs. Newton’s concept of gravity is by far the main gravitational theory used in space missions today, despite the fact that there was apparently good reason to accept Einstein’s quite different theory of gravity into our science. All of this further deepens the mystery surrounding gravitational theory today, so let’s take a closer look at these issues starting with the currently unrecognized law violations in Newtonian theory.

The serious law violations and mysteries found in Newtonian gravitational theory have just been clearly pointed out in reference to one of our most fundamental laws of physics, yet science does not generally recognize these violations. How can this be? Why might those who are the most highly educated in physics be the least likely to acknowledge these mysteries and violations? The answer is that when Newton’s theory of gravity is taught, it is usually accompanied by further instruction on how to resolve these mysteries and violations by referring to an equation called the Work Function. Although it will be shown shortly that this is a fatally flawed explanation attempt that gives a false sense of closure on these issues, this fact is overlooked by our educational institutions today since there is no other explanation for Newtonian gravity. Therefore, all properly educated scientists have firmly learned the standard (though erroneous) logical techniques that have been taught for generations to provide ready answers for the mysteries and violations of Newtonian gravity. This leads to the curious fact that, on the one hand, science found it necessary to search for and accept such alternate gravitational theories as Einstein’s General Relativity Theory, while on the other hand, Newtonian gravity is still widely accepted by scientists. This makes the Work Function an important pivotal element in this whole mystery, and therefore worthy of a closer look.

The Work Function – A Flawed Explanation
Physical labor typically involves moving heavy objects or material from one place to another. The heavier the object and the further it is moved, the more energy must be expended in the process. The Work Function is merely an attempt to describe this fact using a simple equation – originally designed to help engineer mechanical devices that use energy to do work, such as steam engines that burn fuel to move trains. This equation is written as W = F d, which is read as work (W) equals force (F) times distance (d). That is, the more force required to move an object, and the further the object is moved by that force, the more work is done in performing this task.
The Work Function can be a very useful tool in analyzing and quantifying the amount of work done by a given process or machine, and has served engineers well for over a century. However, serious problems arise when its use is extended beyond its design intent. Its original purpose was as an engineering tool to compute how much work is done when a force moves an object across a distance, which also corresponds to how much energy was expended, since an equivalent amount of fuel must be used in the process. This all seems quite reasonable; however, over the years the Work Function has undergone a subtle and surprisingly deceptive transformation into a “work detector,” whose result is taken as the final word on how much energy was used in any given process. This is such a subtle yet powerfully deceptive transformation that it needs to be clarified with an example:

Consider the situation where an object is simply too heavy to move, despite all efforts to push it. There is no question that one could expend a tremendous amount of effort and energy attempting to move the object, yet never actually manage to move it an inch. However, applying the Work Function as a “work detector,” it calculates that zero work was done. A tremendous amount of force was applied to the object, but the object was nevertheless moved zero distance, and since work equals force times distance, the Work Function calculates that zero work was done. If this were further taken to mean no energy was expended, we would have a worker who is exhausted from attempting to move such a heavy object, yet who is considered to have expended no energy. Of course, this is obviously a serious misapplication of the Work Function that brings nonsensical results, yet this is precisely the logic used to justify the gravitational force, as we will see shortly. The Work Function is only designed to help organize and quantify situations where a force clearly moves an object through a distance, but is not meant to function as a generic “work detector” that further tells us whether any energy was expended by an arbitrary event.

Now, to complete the improper transformation of the original Work Function from a simple engineering tool to a generic “work detector,” it has evolved from its original form of W = F d to its current form W = F d cos(q). The additional term here, cos(q), is the cosine function, which transforms any angle from 0 to 360 degrees into a value that lies between -1 and 1. Therefore, the original result from the Work Function calculation is now multiplied by a value between -1 and 1 that corresponds to the angle (q) between the direction the object is pushed and the direction it actually ends up moving. If the object simply moves in the direction it is pushed, which is the usual case, this zero-degree angle between force and movement results in the work calculation being multiplied by 1, since cos(0) = 1. This means nothing changes from the original Work Function when force and movement are in the same direction. However, if the object somehow managed to move completely sideways despite a forward push being applied to it, this 90-degree angle between force and movement means the resulting work calculation must be multiplied by 0, since cos(90) = 0. Therefore, the work done in this scenario would be calculated as zero. This modified Work Function, W = F d cos(q), is said to calculate the amount of useful work, since only the amount of work done in the direction of the force is considered to be desired and therefore useful work.

This is how the Work Function is taught today, which now sets the stage to explain why the previously mentioned violations of the laws of physics by Newton’s gravitational force cause no particular concern for most scientists. First, the issue of objects being held to the planet’s surface by a force that has no known power source is easily dismissed by noting that an object held down by the gravitational force does not move. If the object doesn’t move, there is no work done according to the Work Function, and therefore no energy is expended and no energy source is required to explain how things are forcefully held down by gravity. The serious law violation that results from gravity forcefully holding objects to the planet’s surface with no known power source suddenly vanishes. This is the same flawed logic used earlier, which left our worker exhausted after trying unsuccessfully to move a heavy object despite having apparently expended no energy. Yet, of course, both the worker and gravity must expend energy in these examples.

In similar fashion, the modified Work Function is used to justify the tremendous energy required to hold our moon in orbit, again with no known power source. Since the moon is actually traveling past the Earth in a straight line but is continuously constrained in its orbit by the gravitational force pulling it down toward the planet, this is considered to be a situation much like an object that slides sideways when a force pushes forward. The angle between the direction of the moon’s travel past the Earth and the direction of gravity pulling down is the same 90-degree angle as in the earlier example of the sideways-sliding object, meaning the Work Function must be multiplied by 0. This gives the result that the gravitational force does zero useful work and thus expends no energy in constantly constraining our moon from flying off into space, removing the need to look for a power source. Once again, a serious violation of the laws of physics suddenly vanishes. Yet, a person who must constantly struggle to constrain a heavy, speeding rock into traveling in a circle on the end of a rope might disagree with this zero-work, zero-energy conclusion for orbits.

Finally, there is the situation where objects fall straight down. Surely the Work Function would have to give a non-zero result here since the direction of movement is in the same direction as the downward pull of gravity. Indeed, the Work Function does calculate a positive amount of work, which should mean energy has been expended by the gravitational force, requiring an energy source be identified within the Earth that is drained by an equivalent amount if this event is to remain within our laws of physics. Since there is no such energy source known to science, we must either admit that Newtonian gravity cannot be scientifically explained, or arrive at some further justification. Indeed, an additional logical abstraction has been invented for this type of situation to avoid the search for a power source, which runs along the following lines:

In order for an object to drop from a given height, work had to be done earlier against the pull of gravity to lift it to that height in the first place. Since this upward lifting could be considered negative work from the perspective of the downward-pulling gravitational force, the positive work done by gravity when the object falls could be considered to cancel with this earlier negative work. This zero overall work then corresponds to zero net energy expenditure, and thus we are once again saved from looking for the energy source for gravity. Of course, this abstract exercise overlooks the physical reality that the falling object must still somehow drain gravity’s unknown energy source, and no known theory states how lifting the object earlier would have charged this power source in order to compensate for this later energy drain. Further, this explanation implies the existence of such a mysterious and currently unknown power source, which is the very issue it was invented to avoid. So the “energy balance” in this logic is a meaningless abstraction that merely diverts attention from the physical law violation that gravity somehow pulls objects to the ground while expending no energy.

Once again, the reason this logical conundrum has arisen in our science is due to the deceptively subtle, yet powerful difference between using the Work Function to describe clear situations where a force moves an object through a distance, and using it as a generic “work detector” in all situations. In fact, in the case of Newtonian gravity, not only has the Work Function been misused as a “work detector” but also as a “force authenticator.”

That is, not only is it used to alleviate concerns about law violations by calculating that the gravitational force does no work and expends no energy, but it is put to this use in order to help justify or authenticate the very existence of the gravitational force. After all, any theory involving a force that violates our most fundamental laws of physics is unacceptable as anything other than a purely abstract model of a still unexplained physical process. It cannot literally be taken as the proper physical explanation since this is precisely why our laws of physics exist – as a litmus test or sanity test for such proposed new ideas. The Work Function is simply intended to describe the work done by known forces as they move objects, but here it is being used in an attempt to authenticate the existence of the previously unknown force introduced by Newton – a force that is otherwise scientifically unexplainable. This misapplication of the Work Function essentially creates a loophole in the Law of Conservation Of Energy, corrupting the original purpose of both of these concepts.

This Work Function discussion shows the type of logic that keeps most physicists from acknowledging that Newton’s gravitational force violates the Law of Conservation Of Energy. However, once the flawed Work Function explanation is exposed and removed, there are simply no excuses remaining for this unexplained force.

The rationalists of Descartes’ time had good reason to see Newton’s gravitational force as a return to the magical thinking of the past. Perhaps in Newton’s day it was reasonable to expect that future generations of scientists would find a scientifically viable explanation or even a true power source for the gravitational force. However, three centuries later we have found no answers, instead opting to turn a blind eye to its violations of our laws of physics by installing a flawed logical justification for this force into our science. Regardless of its original purpose, the Work Function has now been incorporated into our science in such a manner that most scientists clearly believe a zero-value result from its calculation always means there has been no expenditure of energy. This has led to the logical oversight that gravity need not expend energy to hold objects to the planet, since there is no motion involved, nor to constrain the moon from speeding away, since the pull of gravity is perpendicular to the moon’s orbit.

This state of affairs exists because we very much want to believe in this force. For centuries it has been the only reasonable explanation we have had, and in fact, it is still the only compelling and intuitive physical explanation for falling objects and orbiting moons even today. The official position in science today does state that another viable explanation exists in Einstein’s General Relativity Theory of a “warped space-time continuum,” but this does not address our everyday experiences and seems far off the mark compared with Newton’s intuitive gravitational force. And indeed, as shown in the following chapter where the new principle is introduced, gravity can be explained in a simple, intuitive, and scientifically viable manner – but without appealing to either an unexplained force or an abstract and largely incomprehensible “warping of space-time.”

So far, we have seen a number of questions, mysteries, and even violations of physical laws surrounding the concept of a gravitational force. We have no answer for why it attracts rather than repels objects, we know of no power source within matter that would produce this force, and it expends energy without diminishing in strength or draining a power source – an “energy-for-free” scenario that violates the Law of Conservation Of Energy. In addition, there is yet another troublesome issue with Newtonian gravity to consider – the issue of its speed of travel through space. We begin with a reminder of our currently accepted universal speed limit, the speed of light.
The Speed-of-Light Limit
Neither matter nor energy can travel through space faster
than the speed of light.

This is a currently accepted law in our science today, stating that the speed of light in the vacuum of empty space represents an absolute upper speed limit on all objects and also on the speed of propagation of all fields and all forms of energy through space. According to this law, nothing known to man can travel faster than light. This is an idea that Einstein proposed as part of his Special Theory of Relativity, and which currently stands as an unbreakable law of nature.
Newton’s Gravitational Force Exceeds the Speed of Light

Newtonian gravitational theory comes with no speed limit. A common example of this is to imagine our sun suddenly vanishing. While it would still appear as if the sun were present for roughly eight minutes as the last rays of light eventually made their way to Earth at light-speed, the gravitational field of the sun would vanish immediately along with the sun. The Earth would not experience eight additional minutes of the sun’s gravity constraining it in orbit, but would immediately leave its orbit about the sun and begin to drift off into space. This is because the loss of gravity from the sun would be immediately felt at any distance throughout the solar system, and indeed throughout the universe according to Newtonian theory. This faster-than-light transmission of the gravitational force through space – and indeed even instantaneous transmission across any distance in our universe – is a great, unexplained mystery in our science today.

This is one violation in Newtonian gravitational theory for which a logical justification has not been found that allows it to be dismissed or overlooked. That is, unlike the law-violating behaviors mentioned earlier that were justified with a misapplication of the Work Function, this speed-of-light violation remains in plain view. However, although this violation lacks a logical justification, a resolution can be found in Einstein’s General Relativity Theory, since one of the key differences with this alternate theory of gravity is that the element of time is built into its equations. This provides a description of gravity that allows it to take time to travel or propagate through space, proposing a solution to this issue. However, this is only a proposed solution since the actual speed of gravity is unknown – no direct tests have been done to determine it.

So, we have the choice of Newton’s simple and intuitive theory, which violates the speed-of-light limit, or Einstein’s complex and mysterious theory, which offers an unproven solution to this violation. As a result of this type of interplay between these two theories, we are left with an odd combination of both theories in our science today. Neither theory truly stands alone today as the singular, correct description of gravity, as both theories tend to complement each other’s weaknesses. It is this type of interplay between them that leaves us with two very different explanations for gravity in our science today, even though common sense tells us there can be only one clear physical explanation underlying any observation. Clearly one of these theories must be fatally flawed, or both theories are merely useful interim models that have captured one aspect or another of the true and as-yet-undiscovered physical explanation for gravity. It is precisely this as-yet-undiscovered explanation that is proposed in the next chapter, offering a resolution to this odd state of affairs in our science today.

No comments: